Information at all.net 2025-05 http://all.net/

All.Net Analyst Report and Newsletter

Welcome to our Analyst Report and Newsletter

So-called secure computing

| see these things online from time to time telling me something about ‘secure computing’ and
I must admit | cannot stand to read most off them. The thing is, there is no such thing and
there is not likely to be such a thing for the foreseeable future.

Here’s why...
I’'m just going to start with a short list...
The term ‘secure’ is not well defined.
No logical system can be consistent and complete.
Without a threat model there is no hope.
| have some experience in breaking them.
Code exists within a context.
Hardware has a non-zero chance of bit (or bigger) errors.
The physics of digital information.
Majority rules (or some form of it).
Covert channels (in all their forms).
Inputs must make a difference.
All possible sequences in all possible states.
Running out of resources.

OK — that’'s enough for now... not that | am done... | will add another theoretical issue... We
don’t have a complete list of what we even mean by it. And we might never be able to have
one...

Drill-down

If you have not given up by now, | am planning to go into a bit of detail on each of these. But |
thought | would give you a chance to quit while you are ahead.

The term ‘secure’ is not well defined.

o Since we don’t have a common agreement on what the term means from a
technical point of view, we cannot every show that we have met the spec (or failed
to do so), so the hypothesis that some ‘code’ is ‘secure’ or not is not testable, which
IS to say, it is not a scientific claim. The inability to translate between the English
term and a detailed specification means we cannot even really talk about it in
sensible ways. But even if we took a pathetic, old, ridiculous, widely used non-
definition like “CIA” (Confidentiality, Integrity, Availability) which misses some really
important things, and each of which is not well defined enough to say something is

Page 1 of 4 Copyright (c) Fred Cohen, 2025 - All Rights Reserved all.net

Information at all.net 2025-05 http://all.net/

kept “Confidential by the code” (for example), there is almost no definition under
which this is achievable today. But more on that later.

No logical system can be consistent and complete.

Those darned mathematicians keep figuring out things that make it impossible to
claim to do our job perfectly. So whatever you mean by ‘secure’ the implementation
cannot be both complete (cover all possibilities) and consistent (without disagreeing
with itself on some of them). That is somehow closely related to the problem of
undecidability (for things like detecting bad code — whatever non-trivial definition of
bad you may choose) that says you have infinite false positives, negatives, or both
even though in a finite state machine (which most current computers actually

usually are) it's only too complex to solve (even with quantum computers by the
way).

Without a threat model there is no hope.

The need to constrain the problem space is fundamental in order to get anywhere
close to a reasonable solution. For example, can the threat make the temperature
in the devices executing the code that they start to melt? | know the code people
out there will tell me that that’s not a problem with the ‘code’ but of course itis. The
problem is the unstated assumptions of the claim of ‘secure’, which there are a
potentially infinite number of. And of course in breaking systems, | start with the
assumptions and violate them (see 50 ways to defeat any system).*

I have some experience in breaking them.

A long time ago | wrote a ‘secure’ Web server. It was proven to meet its (incomplete
but consistent) specifications by a graduate student using mathematical stuff. Of
course he found 1 flaw in the program that, while it did not violate the ‘security’
specification, | did fix, but that’s not the point. In that time frame | was also doing
code reviews of other peoples’ programs, and | don't think | ever got past the first
few dozen lines of code before | found something that was imperfect. A common
example is adding 2 integers and storing the result as an integer. Unless there are
other constraints in place, this can produce a wrong answer (integrity problem), or
with intercepted overflows, a program not completing (availability problem). Of
course exception handling programs have the same problems as other code, but
my real point is that most programmers have no idea of even the simplest things
that can go wrong with their code.

Code exists within a context.

If you are in an embedded system and your code implements a fully specified finite
state machine correctly and is the only code running on the hardware, you may be
able to avoid a lot of the context-related problems. But if you are in a time-sharing
system with an operating environment not your own code present, you need to
operate properly in all possible contexts of that environment in order to meet almost
any requirement you likely can think of for ‘secure’. So when a race condition ends
up messing up some assumption you made about the sequential nature of a series
of system calls and their interactions, you best handle it...

1 http://all.net/Analyst/2021-03C.pdf

Page 2 of 4 Copyright (c) Fred Cohen, 2025 - All Rights Reserved all.net

http://all.net/Analyst/2021-03C.pdf

Information at all.net 2025-05 http://all.net/

Hardware has a non-zero chance of bit (or bigger) errors.

So in order for the ‘code’ to actually be secure, it has to handle hardware errors of
at least some classes properly. Before you rush to say it's impossible to handle
them all, that's part of my point. But certain types of hardware have certain types oif
errors, and operate slightly differently, including having specific hardware problems
that make some functions give wrong answers under specific conditions. For
example a pattern sensitive error in 80x? Chips some years ago that caused some
spreadsheets to get wrong answers. So secure best be for specific hardware
configurations. Don't tell me software implemented fault tolerance (SIFT) is not
feasible — it is still working for Voyager...

The physics of digital information.

Something about discontinuity and finiteness in time and space comes into play
here. But let’s just take 1/3 for example. And then do the error expansion
minimization at the proper level of granulation for the required accuracy and
precision related to the problem your code is solving. If you haven’t done this for all
problems your code can be used to solve, you are likely to get wrong answers...
that darned integrity thing again.

Majority rules (or some form of it).

If enough folks conspire against you, you lose. Whether it's a voting think or an M of
N thing or whatever, your code can only meet the requirements of ‘secure’ if it
operates so that it cannot get ‘outvoted’ by other code in the operating environment.
For example, they can conspire against your code to create thrashing so as to give
it so little performance to meet timing requirements. Which brings us to a later point
so | will not belabor it here.

Covert channels (in all their forms).

Of course your ‘secure’ code is designed top operate in a double-rail hardware
environment with identical performance characteristics for all possible input
sequences. It's not? How do you assure that your multiplier (in the specified
hardware of course) doesn’t return results faster for a 0 than a 1 in any set of
positions of the inputs? You know those timing things can exfiltrate bits... And how
about power consumption. Your code is designed to assure that it consumes the
same amount of power for each possible branch in the code for all input sequences
—right? And it never allocates memory differently for different inputs and states —
right? And there are no timing or volume differences in network traffic when you are
sending content vs. not sending it? Of course not. So you must not be using a
compiler or a high-level language, because none of them deal properly with these
iIssues.

Inputs must make a difference.

o]

At some point, most code has to deal with inputs to produce results. If the inputs
are not adequately precise and accurate, the answers will be wrong. The problem is
that the users make mistakes, and do malicious things, and garbage-in garbage-
out. The code countermeasure is to use redundancy on inputs that adequately
restricts alteration or subversion to assure within the desired level of certainty, that

Page 3 of 4 Copyright (c) Fred Cohen, 2025 - All Rights Reserved all.net

Information at all.net 2025-05 http://all.net/

the inputs are consistent and correct. Of course the code has to be able to take on
the requirements of implementation as parameters. So naturally, your code has
parameters for all of these and related factors so that it runs at the proper levels of
redundancy to assure the desired precision and accuracy at whatever level
specified. Which of course means that it has to use unbounded arithmetic precision
and numbers that have arbitrary length while at the same time having no allocation
of memory or timing differences as identified above... Hmmm. There might be a
problem here somewhere.

All possible sequences in all possible states.

Of course to verify whatever the security properties are you either have to prove or
test for all possible states that all input sequences with all timings produce the
correct outputs, which also means you need to either formally describe the
behaviors or have a way to test input vs. output and state to determine if they are in
fact correct. And by the way, that includes all the inputs and outputs from and to all
the other state machines that interact with your code.

Running out of resources.

Of course if you write your program to not allocate or release any resources after it
starts, and assuming it starts, and assuming all input and output are properly
dedicated with adequate bandwidth always available with limited delay times for all
possible acts of your code, and assuming you are properly scaled to assure that no
input sequence can come faster than you can process it correctly, which you must
have done to meet the fixed timing requirements above, you should be pretty good
to go for this first level of review.

What to do?

I think we should stop bandying about the term ‘secure code’ unless we mean something
about the code being locked in a physically secured safe or some such thing. The specific
properties are what | think are the important things to think about and consider. But perhaps
more importantly, | think we should stop trying to make such claims and admit that all code is
not secure by any reasonable definition and move toward a better understanding and
terminology for discussing the level of certainty associated with mechanisms performing as
desired and specified... the term Surety comes to mind, but then that will become the new
word for security and just as meaningless.

Conclusions

After you have corrected for all of the things identified above, tested it properly to assure that
your theory meets practice over all identified operating environments, and so forth, you may
be ready to start to look at the other various problems that | haven’t bothered to list here. Fear
not, | will not run out of ways your code is insecure, at least not before you run out of time and
money to fix all the problems already identified. And of course your analysis of the unsolvable
issues will provide adequate evidence of limitation of possible ‘security’ failures to within
defined bounds so that the user can properly judge the extent to which the not ‘secure’ things
are acceptable to them. And | think we should stop thinking about perfection, as opposed to
better than what was there before, in a specific and defined way, that we can measure and
talk about reasonably. Is it secure? “No, there is no such thing. Security is something you do.”

Page 4 of 4 Copyright (c) Fred Cohen, 2025 - All Rights Reserved all.net

	All.Net Analyst Report and Newsletter

