
Generalizations to Travel Time Consistency Checking

Background

Admissibility implies reliability and authenticity. The question at hand is how this is demonstrated for 

records. Like all scientific analysis, a theory (i.e., a theory of the case) implies testable hypotheses (e.g., John 

was at the bookstore at or about 7 PM - 7:10 PM on March 12, 2015), which may be tested by refutation 

(e.g., the record shows that John was at the post office at that time on that date). This paper is about an 

improvement to the method of [1] for testing hypotheses about such records. Reference [1] identifies relevant 

prior art and general motivations for the present work, and is incorporated herein by reference. Figure 1 gives 

a sense of the subject matter. It depicts travel times from l1 to l2 as a function of time of day (horizontal). The 

minimum travel of [1] in this case is a fixed 2 hours, the minimum of all times. There are actually times of 

day when travel can take only 2 and 2.5 hours, and other times when it takes 5 hours. If you miss a flight, 

travel time jumps. As you move closer (driving) toward l2, the travel time drops linearly, but there is an 

envelope of time and space in which you have to be close enough to l1 to get back in time to make a flight. 

Figure 1: A depiction of travel times used for consistency checking.

In assessing the consistency of digital records associated with forensic or diplomatic examination, [1] 

describes data and algorithms for travel time consistency checking, which is checking that a set of records, 

each indicating that a certain object was at a certain location at a certain time, is consistent with a set of 

constraints describing how long it takes to get from one location to another.
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The complication that makes this non-trivial is replacement of timestamps with time intervals to represent 

uncertainty in the recorded times. In the section on future work, [1] lists a variety of generalizations of 

interest, including:

• constraints on unrecorded travel ("closed spaces") 
• non-stationary "locations" 
• interactions among objects 

This paper discusses some of those along with some further generalizations: 

• uncertainty in space analogous to that in time 
• constraints on unrecorded travel (more general than closed spaces) 
• constraints that depend on time (including non-stationary "locations") 
• constraints that depend on the object (but not interactions among objects) 

All of the generalizations described here can be combined into a single algorithm which is similar to the 

original one from [1]. In one case, there is a performance penalty, though the result still has the same order of 

complexity as the original algorithm. Appendix A shows an outline of the consistency checking algorithm of 

[1] along with modifications described in this paper. In order to make this paper self contained, we start by 

trying to summarize the parts of [1] needed to understand the generalizations presented there. The points in 

the summary are numbered so that they can be referred to later, e.g., as #17. 

Primitive data

1. "Locations" are names intended to represent positions in space. 

2. "Atomic objects" are names intended to represent objects with bounded locations, those locations being 

functions of time (i.e., they cannot be in two sufficiently distant places at the same time). 

3. Time is assumed to be exactly measurable by a global clock and is represented in the usual ways, either 

real numbers of seconds since some reference time or something that can be converted to that. 

Problem definition

4. The problem input consists of a set of "scheduling constraints" and a "minimal travel time" function, TT. 

5. A scheduling constraint represents a record that a given atomic object was at a given location at a time 

which was not measured exactly on the global clock but by some other mechanism, which is translated into a 



time interval as measured by the global clock thought to contain the time at which the recorded observation 

was made. For example, if the other mechanism recorded 12:44 but it only records time to the minute (no 

seconds) and is thought to be within 5 minutes of the correct time, the interval would be 12:39:00 - 12:50:00. 

6. A scheduling constraint is represented by the name of the atomic object, the name of the location, and the 

start and end times of the time interval. 

7. The minimal travel time function, TT(location1,location2) is a function of two locations returning the 

minimal amount of time it takes any atomic object to get from location1 to location2. This function is 

required to be zero between any location and itself, greater than zero between any two different locations, 

and satisfy the triangle inequality. It is not required to be symmetric (think of one way streets). 

8. The problem is to determine whether the set of scheduling constraints is consistent with the constraint that 

no atomic object can get from any first location, location1 to any second location, location2 in less than 

TT(location1,location2). 

9. The answer to the problem in #8 is yes IFF there is some "schedule" that both "satisfies" the set of 

scheduling constraints and "satisfies" (in a different sense) TT. 

10. A schedule is a set of appearances, each indicating that a given atomic object was at a given location at a 

given (exact) time. 

11. A schedule, S, satisfies a set of scheduling constraints, C, IFF for every scheduling constraint c in C there 

is some appearance s in S where the atomic object and location of s are the same as that of c, and the time of 

s is in the interval of c. 

12. A schedule satisfies a minimal travel time function, TT, IFF for every pair of appearances s1 and s2 in the 

schedule with the same atomic object and having locations l1 and l2 and times t1 and t2 where t1 ≤ t2, TT(l1,l2) 

≤ t2-t1 

Analysis and algorithms

13. The traveling salesman problem is a special case of the travel time consistency problem (just assign the 



same interval to all of the scheduling constraints). Therefore we don't expect an efficient algorithm to reliably  

solve this problem. However, in the cases we expect to encounter, there is relatively little overlap in the time 

intervals of the scheduling constraints, and the problem can be solved in close to linear (actually n log(n)) 

time by the algorithms described in [1]. Cases that take more than this are very likely intentionally altered 

records, and for our purpose it is thought to be normally adequate to simply detect them (which is easy to do 

in the same time) and limit the extent of their impact on relevant records. 

14. Since there are no constraints involving more than one atomic object in this model (i.e., the ignoring 

“interactions among objects” limitation), the problem can be separated into independent subproblems for 

different atomic objects. Therefore the first step is to divide the set of scheduling constraints into a separate 

set for each atomic object. Then each such set will be treated as an independent subproblem. 

15. In order to test whether a schedule satisfies TT it is sufficient to test adjacent appearances, due to the 

triangle inequality. 

16. If some schedule satisfies a set of scheduling constraints, C, and also satisfies TT, there is such a schedule 

with one appearance for each scheduling constraint in C, i.e., there is a bijection between the scheduling 

constraints and the appearances with each appearance satisfying the corresponding scheduling constraint. 

17. An algorithm is shown for testing whether there is a schedule of appearances that satisfies the set of 

scheduling constraints in a given order and also satisfies TT. This algorithm actually constructs such a 

schedule if there is one. In fact it constructs the schedule that has each appearance at the earliest possible 

time. (A similar algorithm constructs the schedule with each appearance at the latest possible time.) 

• For the first scheduling constraint in the order, c1, create an appearance where the time is the start 

time of c1. 

• As long as there are more scheduling constraints to schedule, do the following to schedule the 
appearance for the next scheduling constraint, ci+1, using the time just assigned to the appearance for 

the last one scheduled, ci: 

• Find the minimal travel time from the location of ci to the location of ci+1.

• Add that to the time just scheduled for ci.

• If this result is later than the end time of ci+1 then there is no schedule (with this order) that 

satisfies TT.



Otherwise, assign as the time for the appearance for ci+1, the later of the computed result 

above and the start time of ci+1. 

18. Our algorithm searches for an order in which the scheduling constraints can be satisfied while still 

satisfying TT. Various tricks are used to separate this seemingly n! problem into smaller problems, the first of 

which is #14 above. 

19. A preprocessing phase is used which, in some cases, can reduce the interval in a scheduling constraint on 

the basis of the time interval of another scheduling constraint in conjunction with the minimal travel times 

between the two locations. Reducing time intervals tends to improve later search performance, and in some 

cases can even show that no schedule exists (i.e., the interval is zero). The cost of processing all pairs of 

scheduling constraints would be quadratic, but this can be reduced to something linear in the number of 

scheduling constraints. It turns out that there is no benefit in comparing two scheduling constraints with 

intervals separated by more than the travel time between their locations. In the expected cases, each 

scheduling constraint has an interval within travel time of only a limited number of other scheduling 

constraints. This is bounded by the largest number of scheduling constraints overlapping any time interval 

having as its length the maximum value of TT, which is normally a constant (note the assumption of 

stationary locations). Or at least it does not depend on the number of scheduling constraints or locations, and 

is typically a fairly small constant. An algorithm for iterating over pairs of scheduling constraints having time 

intervals separated by less than some time, T, is: 

1. create an array A containing the scheduling constraints 
2. sort A by start time 
3. for i from 1 to A.length do 

  for j from i+1 to A.length while A[i].end+T <= A[j].start do 
    processpair(A[i],A[j]) 

The time for sorting the constraints is O(n log(n)) where n is the number of constraints and the time for the 

iteration is proportional to the number of pairs with intervals separated by less than T. 

20. When the algorithm above makes some improvement, it may be worth while to run it again to see 

whether the improved data can be further improved. Unfortunately, it is unknown how many passes may be 

required to converge, but in practice the answer seems to be two (one forward and one backward). 



21. Wherever there is a time interval of length more than the maximum value of TT with no scheduling 

constraints overlapping the interval, the problem can be separated into one set of scheduling constraints 

before the interval and another set after the interval, and these two can be solved independently. The 

algorithm for this: 

1. For each scheduling constraint, create a start time record and an end time record (the start time record 
contains the start time of the scheduling constraint plus the fact that it is a start time, and similarly for 
the end time record) 

2. Create a single array containing all of these records and sort it by time 
3. initialize the variable C to 0 (C counts the scheduling constraints in progress) 
4. iterate through the array from smallest time to largest, at each step doing: 

• if the next entry is a start record, add 1 to C 
• if the next entry is a stop record, subtract 1 from C (C should never be negative) 
• Whenever C is set (decremented) to 0, compute the difference between the (end) time of the 

record that caused the decrement to the (start) time of the next record. If this difference is 
more than the maximum value of TT, the set can be separated by the time interval between the 
(stop) time of this record and the (start) time of the next record. 

22. The overall algorithm first separates the scheduling constraints by atomic object, then for each atomic 

object does the preprocessing phase (#19) a small number of times (#20), then separates the scheduling 

constraints by long enough empty time intervals (#21), and finally for each interval containing scheduling 

constraints does a depth first search for an ordering using an incremental version of #17, where each search 

node corresponds to an initial segment of a schedule. The operations for getting from one search node to the 

next are constant time (if we assume evaluating the travel time function is constant time), and in cases of 

interest the number of search nodes required to find a schedule or determine that there is none is proportional 

(with the constant being small) to the number of scheduling constraints. Given that we generally consider 

failure of the search to be linear in the number of scheduling constraints to be a satisfactory result in itself, it 

is straight forward to simply limit the search by limiting the number of search nodes to a small multiple of 

the number of scheduling constraints. 

23. Some of the algorithms in [1] are constant time operations for moving from one search node to the next, 

e.g., finding the next scheduling constraint that could possibly be added to the current search node, 

backtracking to the previous search node. These are independent of the issues in the present paper. 



Making TT depend on the atomic object

One way to make the algorithm better model the real world is to make TT a function of the atomic object and 

the starting and ending locations. For instance, in situations where the atomic objects are people who move 

by walking or running, different people have different limits on how fast they can move. By failing to 

distinguish among different people, we treat slow people as if they were fast, since the TT function has to 

return the minimal travel time over all objects. This fails to recognize as inconsistent the inputs that describe 

slow people moving unrealistically as fast as fast people. This improvement is very simple from the 

algorithmic perspective, since our algorithms only use TT in a context in which the (single) relevant atomic 

object is already identified. We simply replace every occurrence of TT(x,y) with TTA(A,x,y) where A is the 

atomic object involved in the consistency checking, and, of course, arrange for the new function, TTA, to 

compute the minimal time required for atomic object A to go from x to y. Note that this generalization 

combines trivially with all others described below, so it is largely ignored for the rest of the paper. 

The pattern of making TT more complex in order to model more complexity in the world recurs in what is to 

come. When we describe the cost of these algorithms, we always assume that TT is computed in constant 

time. It seems likely that some of the complexity that we add to TT will end up costing some time. On the 

other hand we have no basis for expecting that even the original TT function of only two locations was cheap 

or even for expectations of what this cost might depend on. 

Making TT depend on time

Now that we have seen a simple example of extending TT we turn to a more complicated and interesting one,  

which is making it depend on time. Here are a few examples to convey an idea of what we have in mind: 

• Driving from one place to another in rush hour takes longer than at other times when there is less 
traffic 

• If you're at one airport, say LAX, at 1:30 waiting for the next plane to another airport, say SFO, which 
leaves at 1:45 and then takes 1:10 to get there, you can't get to SFO until 2:55. Your minimal travel 
time starting at 1:30 is 1:25. However, this minimal time decreases (at a rate of 1) while you wait for 
the plane. The time it takes to get to SFO at 1:45 is only 1:10. 

It turns out that just adding a time argument to TT is not adequate for this generalization.  Rather two 

different travel time functions are needed, one to compute the earliest time allowable to be at a second 



location after having been at a first location at time t, and another to compute the latest allowable time to be 

at a first location before being at a second location at time t. The relation between these two functions can be 

clarified by combining them into a single constraint of the following form: 

If object A is at location l1 at time t1, then it is not allowed to be (i.e., it is inconsistent for it to be) 

at location l2 during the time between t2 and t3. 

This could in turn be expressed in terms of a new function, 

DisallowedTime(l1, t1, l2) returning the interval (t2, t3). 

Note that this differs from the TT of [1] in that it combines TT(l1,l2) with TT(l2,l1). In the model of [1], 

DisallowedTime(l1, t1, l2) = (t1 - TT(l2,l1), t1 + TT(l1,l2)). 

One of the topics for future work in [1] was non-stationary locations. The idea was that a record indicating a 

credit card was read at a given time could treat the credit card reader as the location. But the credit card 

reader might be on a plane. One solution would be to compute the location of the plane at the time the record 

was made. In some cases that is practical, but in other cases it makes more sense to change our view of what 

TT means, and say that its arguments are names of sensors (such as credit card readers) which are then free to 

move. In that case, the travel times between sensors may change because the sensors move, as well as for 

other reasons above (traffic, waiting for planes, etc.) and all we need to know about the motion of the sensors 

for purposes of computing schedules and determining consistency is encoded in TT. That is, making TT a 

function of time is a solution to the problem referred to previously as non-stationary "locations". 

Details of travel time as a function of time

Although the DisallowedTime function described above seems a nice theoretical framework for 

understanding time dependent travel time, it is not most convenient for our computational needs. The TT 

function is actually used in [1] in two ways: 

• if object A is assumed to be at location l1 at time t1, what's the earliest later time it could be at l2 

• if object A is assumed to be at location l1 at time t1, what's the latest earlier time it could be at l2 



We actually use: 

TT1(t1,l1,l2) to compute the amount of time it takes to get to l2 starting from l1 at t1, and 

TT2(l1,l2,t2) to compute the minimal amount of time before time t2 it would be possible to have been at l1 

given that the object was at l2 at t2. 

We put the arguments of TT2 in a different order to remind the reader that the time argument in TT2 applies 

to the destination location, which is the second location argument. In both cases, the travel is from the first 

location argument to the second. Note that TT1 and TT2 are time reversed versions of each other. That is, if 

we take a history and reverse the signs of all of the times, so that everything happens in reverse order, then 

the TT1 of that history is the same as the TT2 of the original history and vice versa. In that case, of course the 

locations are reversed, since the travel is now in the opposite direction. That is, TT1(t1,l1,l2) becomes 

TT2(l2,l1,-t1) - the argument order is reversed. 

We can now begin to see how the problem definition #4 - #12 is affected by making the travel time function 

depend on time. Corresponding to the original requirements in #7 we now have: 

• Both travel time functions must be zero from every location to itself at all times
.

• Both travel time functions must be positive (or at least non-negative) from every location to every 
other location at all times. 

The introduction of moving sensors (and also the later section on uncertainty in space) makes it 

possible for an atomic object to be sensed by two different sensors at the same time, which means that 

minimal travel time between the two (in both directions) will be zero. In this case we should replace 

the requirement above with:

∀ locations l1,l2, times t, if l1 ≠ l2 then TT1(t,l1,l2) ≥ 0 and TT2(l1,l2,t) ≥ 0. and also, 

∀ locations l1,l2, times t, if either TT1(t,l1,l2) = 0 or TT2(l1,l2,t) = 0

then TT1(t,l1,l2) = TT1(t,l2,l1) = TT2(l1,l2,t) = TT2(l2,l1,t) = 0 

• The triangle inequalities, as before, express the intuition that one way to get from l1 to l3 (but now 



starting at time t1) is to first go from l1 to l2 and then from l2 to l3. Therefore the best way should be 

no worse than that way. The second triangle inequality is analogous for reversed time. 

∀ locations l1,l2,l3, times t 

   TT1(t,l1,l3) ≤ TT1(t,l1,l2) + TT1(t + TT1(t,l1,l2),l2,l3) and 

   TT2(l1,l3,t) ≤ TT2(l2,l3,t) + TT2(l1,l2,t - TT2(l2,l3,t)) 

Further constraints on travel time appear below (see TT1-2 and WAIT). 

The constraint in #8 now becomes that no atomic object can get from any first location, l1 to any second 

location, l2 starting at time t1 in less than TT1(t1,l1,l2), which we might rephrase as any atomic object at l1 at 

time t1 cannot be at location l2 at any time between t1 and t1 + TT1(t1,l1,l2). Similarly, any object at location 

l2 at time t2 cannot be at location l1 at any time between t2 - TT2(l1,l2,t2) and t2. 

Similarly, #12 becomes: A schedule satisfies the minimal travel time functions, TT1 and TT2, IFF for every 

pair of appearances s1 and s2 in the schedule with the same atomic object and having locations l1 and l2 and 

times t1 and t2 where t1 ≤ t2, TT1(t1,l1,l2) ≤ t2-t1 and TT2(l1,l2,t2) ≤ t2-t1 

We will show below that, after introducing additional constraints on travel time, the two conjuncts in the 

condition above turn out to be equivalent. To provide some intuition, we first show a sample graph of TT1 

and TT2 as a function of time. Driving from l1 to l2 in 5 hours is always possible. However, a plane leaving 

at 3:00 arrives at 5:00, and another slightly slower plane leaving at 6:30 arrives at 9:00.  

Figure 2: TT, TT1, TT2, and overlaps
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What we called TT(l1,l2) in [1] is now the minimum value of TT1 over all times, which is the same as the 

minimum value of TT2 over all times. There is no limit on how far TT1 can rise above that, or how fast. It 

can increase discontinuously. However it cannot decrease discontinuously and its downward slope can never 

be more than 1. This graph is certainly not symmetric in time and we might wonder whether we have really 

found an asymmetry between past and future. 

The answer is that the symmetry appears in TT2 which has all the same properties in the negative time 

direction. When the plane leaves from l1, the minimal travel time forward takes a sudden jump and then 

decreases at a rate of 1 until the next plane leaves. The symmetric case is that, when a plane arrives, the latest  

time at which someone could have left remains the same for a while, meaning that TT2 increases at the rate 

of 1 and then suddenly drops when the next plane arrives. So viewing time backward we would see the same 

sudden increases and gradual decreases that we see looking forward in time with TT1. 

It seems clear that TT1 and TT2 must be closely related, even though we have not yet shown a single 

constraint that involves both of them (other than the case where the travel time is zero). We now correct that 

deficiency. We refer to this as TT1-2:

∀ locations l1,l2 and times t1,t2: 

  By definition of TT1, it is possible (consistent) for an object to be both at location l1 at time t1, and at 

location l2 at time t1 + TT1(t1,l1,l2). 

  This implies that  t1 + TT1(t1,l1,l2) - TT2(l1,l2,t1 + TT1(t1,l1,l2)) ≥ t1 

  Subtracting t1 from both sides and adding the TT2 term to both sides we get 

    TT1(t1,l1,l2) ≥ TT2(l1,l2,t1 + TT1(t1,l1,l2)) 

  Similar reasoning in the reverse direction leads to 
    t2 - TT2(l1,l2,t2) + TT1(t2 - TT2(l1,l2,t2),l1,l2) ≤ t2 

   or TT2(l1,l2,t2) ≥ TT1(t2 - TT2(l1,l2,t2),l1,l2)) 

Examples above of planes leaving and arriving show that the inequalities cannot be replaced with equalities. 

TT1-2 requires the symmetry we see between TT1 and TT2 in the graph, but how about the fact that 

downward movement is limited to a slope of one? This requires another constraint, which we call WAIT: 



∀ times t1,t2 and locations l1,l2, if t1 < t2 then 

   t1 + TT1(t1,l1,l2) ≤ t2 + TT1(t2,l1,l2) and 

   t2 - TT2(l1,l2,t2) ≥ t1 - TT2(l1,l2,t1) 

That is, you can't get from l1 to l2 any earlier by simply leaving later. (We might say you got from l1 to l2 

"faster" by leaving later if you arrive at the same time, in that the same distance was covered in less time, but 

you don't arrive any earlier.) 

In the same way we can view the triangle inequality as meaning simply that one of the ways to get from l1 to 

l3 is to go first from l1 to l2 and then from l2 to l3, we can view WAIT as meaning that one way to get from l1 

to l2 starting at time t1 is to wait at l1 until some later time, t2 and then go from l1 to l2. 

So how does this limit the downward slope to one? Suppose TT1 from l1 to l2 at time t is decreasing faster 

than one, for instance TT1 at time t is 10 time units and one time unit later TT1 has decreased by two time 

units to be only 8 time units. Then 

t + TT1(t,l1,l2) = t + 10, which is more than (t + 1) + TT1(t+1,l1,l2) = (t + 1) + 8 = T + 9 

This violates WAIT. 

Although some might consider WAIT to be obviously true, we point out at least one case where it is violated. 

Returning to the use of moving sensors as the location arguments in the travel time functions, suppose we 

have two traditional immobile sensors as locations l1 and l2 and that it takes a person 10 minutes to get from 

one to the other. Now we add a third sensor, l3, which is a flying robot that senses a person at l1, then flies to 

l2 in one minute. WAIT claims that the person could get from l1 to l2 in one minute, since initially the travel 

time from his location to l3 is zero, and one minute later the travel time from l3 to l2 is zero. All he has to do 

is "wait" at l3. The problem is that in reality he cannot do that. Note that this example differs from the sensor 

being a credit card reader on a plane only in that a person could wait at the credit card reader on the plane, 



and doing so would get him from the point of the flight's departure to its destination at the speed of the credit 

card reader. If l3 is equipped with GPS or something similar, it seems better to use this position data as the 

"location" at which the object was observed. Below we will argue that the opposite choice seems better in the 

case of the credit card reader on the plane. 

We can now prove what we claimed above in relation to #12, that if a schedule satisfies the TT1 part of the 

constraint then it must also satisfy the TT2 part, and vice versa. Suppose we have two appearances, a1 in 

which atomic object A is at location l1 at time t1 and a2 in which atomic object A is at location l2 at a later (or 

equal) time t2. 

We use t2' as a name (or abbreviation) for t1 + TT1(t1,l1,l2). 

Suppose the TT1 part of the constraint is satisfied: 
  (1) t1 + TT1(t1,l1,l2) ≤ t2 

  subtituting t2' for its definition gives 

  (2) t2' ≤ t2 

  WAIT says: if t1≤t2 then t2 - TT2(l1,l2,t2) ≥ t1 - TT2(l1,l2,t1) 

  using t2' for t1 in WAIT, in combination with (2), we get 

  (3) t2 - TT2(l1,l2,t2) ≥ t2' - TT2(l1,l2,t2') 

  TT1-2 says: t1 + TT1(t1,l1,l2) - TT2(l1,l2,t1 + TT1(t1,l1,l2)) ≥ t1 

  subtituting t2' for its definition in TT1-2 gives 

  (4) t2' - TT2(l1,l2,t2') ≥ t1 

  combining (3) with (4) gives 
  (5) t2 - TT2(l1,l2,t2) ≥ t2' - TT2(l1,l2,t2') ≥ t1 

  using transitivity of ≥ on (5) gives 
  (6) t2 - TT2(l1,l2,t2) ≥ t1 

The last line is the TT2 part of the constraint, so we have proven that if a pair of occurrences is consistent 

with the TT1 condition then it is consistent with TT2. The symmetry of TT1 and TT2 can be used to 

construct a similar proof in the other direction. 

Impact of time dependent travel time on analysis and algorithms

We now move on to the Analysis and algorithms section, #13 - #23, to find uses of the travel time function 

and its properties and see how they are affected by the proposed changes. 



The triangle inequality was used (#15) to show that only consecutive appearances have to be checked for TT 

violations. Now we have two different (but symmetric) triangle inequalities. Following [1], suppose there are 

three appearances, a1, a2, a3 with the same atomic object, and locations and times l1,t1 for a1, l2,t2 for a2 and 

l3,t3 for a3, with t1 ≤ t2 ≤ t3. (Note that [1] uses < and we now generalize to ≤.)  If we assume that the pairs 

a1,a2 and a2,a3 both satisfy the TT1 constraint we can prove that the pair a1,a3 does also. (The proof is 

omitted due to space constraints.)

The symmetry between TT1 and TT2 should convince the reader that a corresponding proof works for TT2. 

Since satisfying TT1 is equivalent to satisfying TT2, we only have to check one of them for each consecutive 

pair of appearances. 

The algorithm for determining whether a given order is consistent with TT (#17) has to be changed in that the 

travel time function TT changes to TT1 or TT2, depending on whether the earliest or latest appearances are to  

be found. Of course these functions also need time arguments. The phrase 

Find the minimal travel time from the location of ci to the location of ci+1.

changes to 

Find the minimal travel time from the location of ci to the location of ci+1 starting at the time just 

assigned to the appearance for ci. 

The version that computes the schedule with latest possible appearances similarly uses the time just assigned 

to an appearance as the time argument to TT2. 

[1] does not attempt to prove correctness of the algorithm for finding the schedule that puts appearances in a 

given order and puts each appearance as early as possible (#17). There are two things to prove, first, that a 

schedule found by the algorithm is correct, and second that when the algorithm fails, there is no such 

schedule. The intuition for both of these is the same in the TT1 and TT2 version as in the original TT version. 

The WAIT, property is important here, since it allows us to compute the minimal travel time starting from 

the time assigned to the just scheduled appearance and not have to worry that by scheduling that appearance 



for a later time or waiting for a later time to leave, the next appearance might be able to happen earlier. 

Preprocessing to derive tighter scheduling constraints (#19) again requires changes to replace TT with TT1 in 

computing later times from earlier ones (using the earlier times for the time argument) and with TT2 in 

computing earlier times from later ones (using the later times for the time argument). Also, as above, no 

proof is shown in [1] but the intuition is unaffected by the changes. 

The general point that tighter bounds on scheduling constraints are only derived when they are within travel 

time of each other is still valid, as is the idea of simplifying matters by restricting attention to the maximum 

TT. However, there is more than one possible interpretation of the idea of maximum TT. Actually, even in [1]  

the maximum over all minimal travel times was not the only one that could have been used. Another would 

have been the maximum TT for the particular location argument under consideration. Now that we consider 

additional arguments for TT, another is the maximum of all minimal travel times for the atomic object under 

consideration (if travel times depend on the atomic object). Another is the maximum of all minimal travel 

times for that atomic object starting at the current location at the current time, and so on. All of these lead to 

the right result. Which is best depends on the cost of computing such maxima and how much work will be 

saved by using the smaller values that result from maximizing over smaller sets. Both of these are beyond the 

scope of this paper, since they depend on details of the travel time computation and on the statistical 

properties of the inputs. The discussion above applies as well to independent processing of subsets of 

scheduling constraints separated by more than the maximum TT (#21). 

Uncertainty in space (nonΔ≠)

The analogy between uncertainty in space and time is not as straight forward as it may at first seem. While 

we have represented uncertainty in time with time intervals, we have represented space not as analogous 

positions in a coordinate system (which could conceivably be generalized to regions of space in that 

coordinate system), but rather names. It should come as no surprise by now that our approach is going to be 

to adjust the travel time function to reflect uncertainty in location. Before we go into further detail it is worth 

mentioning that something as simple as replacing a location name with a region in a coordinate space is not 

particularly useful in terms of computing travel time. For instance, if our location were a credit card reader 



on a flight, then the uncertainty in its position relative to the earth may be relatively large, but this does not 

affect its travel time to any other sensor. The travel times between this sensor and others in the plane are 

unrelated to the uncertainty in the position of the plane. In fact, computing travel time from position with 

large uncertainty and high velocity would lead us to conclude that any atomic object on a plane could reach 

any sensor on the plane in nearly zero time, whereas other considerations might indicate that this is not true - 

there's a drink cart in the way and it's going to take several minutes to get out of the way. For sensors outside 

the plane, the important data is the time that the flight arrives at its destination and opens its doors, and the 

travel time from that position (which can be known rather precisely) to the other sensor. 

For a better example of uncertainty in space, suppose the sensors are credit card readers in department stores, 

but stores have a large number of such readers, and the records identify only the store. In essence, then, all of 

the card readers in one store combine into a single sensor spread over a region of space. This causes the 

travel time function to violate the triangle inequality. Imagine three such department stores in a row (Sears, 

Macy's and Gap) where it is possible to get from one to the next quickly, but going from the first to the third 

takes much longer. Figure 3 shows the non-Δ≠ (left) and Δ≠ (right) analysis and sample results.

Figure 3: A non-Δ≠ (left) example as opposed to a Δ≠ (right) result

We will refer to travel time functions satisfying the triangle inequality as Δ≠ (including TT, TT1 and TT2) 

and those that do not as nonΔ≠. In addition to the triangle inequality, uncertainty in space tends to lead to 

zero travel times between distinct sensors, i.e. it may be possible to be sensed by two different sensors at the 

same time. (Think in terms of a phone being sensed by two different cell phone towers at the same time.) 

Fortunately, this issue has been dealt with above. 

An interesting example of a limitation on even nonΔ≠ travel times is inability to model a situation where 
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three sensors have pairwise overlapping regions and yet it is impossible to visit all three within a very short 

time. This is depicted in Figure 4, where different sensor regions (S1, S2, 

and S3) overlap only in pairs. That would seem to require a new sort of 

constraint explicitly disallowing visiting three particular sensors within 

less than a specified amount of time. Naturally we can then construct 

examples of larger sizes, n, in which it is impossible to visit all n sensors 

quickly even though all subsets of size n-1 can be visited quickly, leading to new forms of constraints for 

each value of n. 

Impact of nonΔ≠ travel time on algorithms

With nonΔ≠ travel time it is no longer true that travel times only have to be checked for adjacent pairs of 

appearances (#15). The algorithm for generating a schedule with all appearances as early as possible for a 

particular order (#17) no longer works, since, after going from l1 to l2, the minimal travel time from l2 to l3 

might get to l3 before the minimal travel time from l1 to l3. The obvious way to fix this would change a linear 

algorithm into a quadratic one: compute the earliest possible time of an appearance, an+1, being added to the 

end of a schedule, a1 ... an, as the maximum over all i such that 1 ≤ i ≤ n of the earliest time the object can get 

from the location of ai to that of an+1. If a maximum TT can be computed efficiently and the value is not too 

high, then this can still be used to limit the search back through previous appearances. Since the number of 

appearances in a time interval can be expected to be proportional to the length of the interval, the cost is then 

multiplied by something proportional to the maximum TT. This is the same trick that is used in preprocessing 

scheduling constraints (#19). The preprocessing of scheduling constraints (#19) does not rely on Δ≠ travel 

time and is not affected. The search for an acceptable order (in #22) is an incremental version of the earliest 

possible schedule algorithm (#17) and pays a similar cost. [1] regarded that cost as linear in the number of 

scheduling constraints. 

Figure 4: Overlapping sensor regions
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Closed spaces and Involuntary recording (CTT)

One of the topics for future work mentioned in [1] was "closed spaces". These are regions of space with a 

boundary separating the "inside" from the "outside" where an atomic object cannot get between the inside 

and outside without being sensed and recorded on the boundary in a form which our program will see as a 

scheduling constraint. In some cases the requirement applies only to one direction of travel, such as entering 

the secure area of an airport, whereas exit is not recorded.  One of the theorems in [1] was that any subset of 

a consistent set of scheduling constraints was still consistent.  This is no longer true with closed spaces.  One 

might view the change as being that in [1] it is tacitly assumed that an atomic object could visit a location 

without creating a scheduling constraint. Now we require a scheduling constraint when an atomic object 

visits a location on the boundary.  The definition of a schedule satisfying a set of scheduling constraints 

(#11), must change to require every appearance in the schedule to satisfy at least one of the scheduling 

constraints - a set of only two scheduling constraints involving the same atomic object on opposite sides of 

the boundary is not to be considered consistent due to the possibility of creating a schedule with a third 

appearance on the boundary. Given that we will eventually create a schedule with a bijection between the 

appearances and the scheduling constraints, it seems simplest to just require this bijection in #11. 

What we now describe (and have implemented) is a generalization of closed space constraints which we call 

involuntary recording. The idea is that just being at a location (or getting close enough to a sensor) will 

generate a record. In order to avoid generating a record you might have to go out of your way and that might 

increase the travel time. We use the term CTT, standing for "covert travel time", for a new function that 

computes the minimal time required to get from one location to another without being recorded anywhere 

along the way.  The only constraint on CTT is that it must be at least as large as TT on the same arguments. 

We also define, analogous to #12, that a schedule satisfies a minimal covert travel time function, CTT, IFF 

for every pair of consecutive appearances s1 and s2 in the schedule with the same atomic object and having 

locations l1 and l2 and times t1 and t2 where t1 ≤ t2, CTT(l1,l2) ≤ t2-t1.
1

1 A small technical problem arises when we combine closed spaces with other extensions above that allow an 
atomic object to be at two different "locations" at the same time. Suppose that object A is at location l 1 at 

time t1 then at later time t2 is at both l2 and l3. For purposes of TT this presented no problem. Either location 



 

In order to express a closed space constraint we can make the value of CTT between forbidden consecutive 

pairs larger than the time difference between any two scheduling constraints under consideration. In order to 

see that CTT is strictly more general than closed spaces, consider a situation where a building has an 

emergency exit which automatically records those who exit, and a regular exit which does not. The only path 

with a small travel time from a sensor just inside the emergency exit and another just outside requires going 

through the emergency exit and being recorded there. In order to avoid being recorded it is necessary to take 

the longer route through the regular exit. This is not a closed space but it is modeled by CTT. 

CTT functions tend to be nonΔ≠ since some involuntary sensor is likely to be on the fastest path between 

some pair of other sensors. One might therefore expect involuntary recording to require the same algorithmic 

changes described above for uncertainty in space. However, the CTT constraint only applies to consecutive 

appearances. As long as TT is Δ≠ the additional tests are not needed.  Analogous to TT, CTT can be made 

dependent on time by defining CTT1 and CTT2. This allows modeling such things as closed spaces being 

created or temporary suspension of exit recording due to a fire alarm and sensors moving into and out of 

closed spaces. As mentioned above, such changes must occur at a specific time since travel time is a function 

of time. CTT in conjunction with dependence on atomic object can forbid certain atomic objects from 

reaching certain sensors, and in conjunction with time dependence such restrictions can also be temporary. Of 

course, all of these complicated behaviors require complicated CTT functions. The WAIT and TT1-2 

constraints apply also to the time dependent versions of CTT1 and CTT2. 

Impact of CTT on algorithms

The main change required to the algorithm from [1] for CTT is that in #17 and in the incremental version in 

could be viewed as the next appearance and the algorithms still work. However now we are supposed to 
compare t2-t1 with CTT, which might be different for l2 and l3, and in particular CTT could be satisfied for 

one and not the other. A number of solutions are possible, such as regarding the order of the appearances to 
be additional information not simply derived from their times (but still required to at least be consistent with 
the times). In that case it is really possible for the schedule with l2 first to be consistent while the schedule 

with l3 first is not. Alternatively, one could place additional constraints on CTT to ensure that either both 

schedules are consistent or neither is. 



#22, CTT has to be used instead of TT to compute the earliest next time an atomic object could be at the next 

location (or the latest previous time at the previous location). Since CTT is at least as large as TT, use of CTT 

in consecutive appearances still guarantees that the consecutive appearances will satisfy TT. 2

In the preprocessing phase (#19) we generally do not know whether one scheduling constraint will end up 

being scheduled immediately after another, so in general use of CTT is not justified in deriving smaller time 

intervals. However, there are some cases where start and end times can be shown to require that two 

scheduling constraints must be represented by consecutive appearances, and in those cases more accurate 

results can be obtained by using CTT. 

The last topic is how CTT affects the use of maximum TT in limiting search. Specifically, if maximum TT 

had to be replaced by maximum CTT, our arguments about linearity would be ruined, since in some cases, 

like closed spaces, the maximum CTT is effectively infinite. 

There are three different uses of the maximum TT. One was added above in response to nonΔ≠. This was 

used to check TT between a newly added appearance and the non-consecutive previous appearances. Since 

CTT is only relevant to consecutive appearances, this case requires only maximum TT, not CTT. 

Another case is in preprocessing scheduling constraints. In that case we concluded that CTT should be used 

only if it can be proven that the two scheduling constraints had to be scheduled adjacent to each other. This is  

similar to the nonΔ≠ case. The first scheduling constraint being compared to a given scheduling constraint 

might be compared with CTT, but after that we can stop when the time differences exceed the maximum TT. 

The final and most interesting case is separation of a set of scheduling constraints into multiple independent 

2 It turns out that there is still a good use for the old TT function, even in this case where the time of the next 
appearance is computed by CTT. A somewhat subtle point in [1] (not yet mentioned in this paper) is that if 
the search for a schedule discovers that the schedule so far under consideration, a1 ... an, cannot be extended 

with an appearance for some remaining scheduling constraint due to the fact that the earliest possible arrival 
from an would be too late (actually this applies if there is any such remaining scheduling constraint), then the 

schedule so far under consideration cannot be extended to a satisfactory schedule at all - it's time to backtrack 
from an. This is not true of CTT, however. Therefore, even though the schedule is built by adding CTT from 

an to some proposed an+1, if that time turns out to be too late to arrive at an+1, it is worth while to check 

whether TT would also be too late, since that would justify backtracking from an. 



sets on the basis of a gap of more than the maximum TT (#21). Here it appears that CTT actually is relevant, 

since a set of two scheduling constraints on opposite sides of a boundary violate the constraint even if they 

are separated by more than the maximum TT. Of course it would be safe to use the maximum CTT instead of 

the maximum TT in separating the set of scheduling constraints, but in the case of a simple closed space this 

would prevent any separation at all. 

Fortunately, there is a fairly good solution, at least under the assumption that scheduling constraints are 

mostly linearly ordered. We first tentatively separate a set of scheduling constraints into two sets, S1 and S2 

on the basis of a gap of maximum TT. We can then find all of the scheduling constraints that could possibly 

be scheduled last in S1 on the basis of some simple and easy to compute test, e.g., all those with end times at 

least as late as the largest start time. Call that set S1end. Similarly find the set that could possibly be 

scheduled first in S2 and call that set S2start. We expect often there will be only one of each, and rarely very 

many. Now for each pair of scheduling constraints where the first is in S1end and the second is in S2start, 

test on the basis of CTT whether that pair is consistent. There are three possible outcomes. If all pairs are 

consistent then we can go ahead and separate the two sets. If no pairs are consistent then we know that the 

entire original set of scheduling constraints is inconsistent because there is no way of getting from S1 to S2. 

In the remaining case we can simply not separate the set at that gap and allow the normal search mechanism 

to resolve the problem. Naturally, we hope this will be the unusual case. 

In fact there seems to be no shortage of potential optimizations, and which are worth while depends on the 

particular problem inputs. This seems to be a characteristic shared by all NP-complete problems. We have 

been working on the assumption that the order of appearances is mostly determined by the start time of one 

scheduling constraint being later than the end time of another, and this tends to suggest that most 

optimizations will not be worth while, especially any that increase overall complexity. 

Conclusion 

This paper describes a series of improvements to [1]. Most of the problems described there as future work are 

solved here. Furthermore, somewhat surprisingly, these improvements have not been at very high 



computational cost, even when they are all combined into a single algorithm. Only one seems to increase the 

cost significantly at all. Of course, this analysis does not include the cost of computing (and for that matter 

developing) the appropriate versions of travel time functions to be used in the algorithms reported here. 
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Appendix A: outline of consistency checking algorithm

Sections with red labels are added or modified parts of the original algorithm. Note that dependence of travel 

time on atomic object and time are not shown explicitly since they affect all uses of travel time. 

I. group scheduling constraints by atomic object
II. for each atomic object, O, process the scheduling constraints for O:
   A. preprocess the set of scheduling constraints:
      alternate between forward and backward in time passes until 
      a pass through the set makes no changes
        1. sort by start time, compare each scheduling constraint to
           those after it until time difference > max of min TT
        2. CTT: 
           in cases where times require adjacent appearances, use CTT instead of TT
   B. separate the set of scheduling constraints into independent subsets
        1. sort by time, find gaps of inactivity > max of min TT
        2. CTT: 
           determine whether adjacent sets must, must not or might satisfy CTT
           must not => inconsistent
           must => leave the two separated
           might => keep them joined together
   C. search for a consistent schedule using depth first search; expand-node does:
        1. find remaining scheduling constraints that could be next
           on the basis of start/end times
        2. for each candidate (until success or resource limit) create a new node
           a. CTT: 
             reject the node if it violates CTT (for original algorithm CTT = TT) 
           b. nonΔ≠ TT:
             if TT is nonΔ≠ then also check TT against earlier
             appearances back to max of min TT


