
Analysis of redundant traces for consistency
With examples from electronic messaging and graphical images

Fred Cohen
California Sciences Institute and

Fred Cohen & Associates
Livermore, CA 94550

fc at all dot net

Abstract—This paper is about the detection of inconsistencies and  
consistencies in redundant traces to detect forgeries, demonstrate 
forensic soundness, and lend weight to assertions made by forensic 
examiners performing analysis.
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I. INTRODUCTION, OVERVIEW, AND BACKGROUND

The  requirements  for  the  use  of  scientific  evidence 
through expert opinion in the United States and throughout 
the world are based on principles and specific rulings that 
dictate,  in  essence,  that  the  evidence  be  (1)  beyond  the 
normal knowledge of non-experts, (2) based on a scientific 
methodology that  is  testable,  (3)  characterized  in  specific 
terms with regard to reliability and rates of error, (4) that the 
tools used be properly tested and calibrated, and (5) that the 
scientific methodology is properly applied by the expert as 
demonstrated  by  the  information  provided  by  the  expert. 
[1][2][3][4] This paper offers an approach to meeting these 
criteria for digital forensic evidence (DFE).

Digital forensic evidence comes in the form of "traces". 
A trace is a sequence of bits that are put forth by a party and 
asserted as being the result of some process undertaken on 
some digital system. An "event" is a statement, document, or 
any other item of import to the case.

Without redundancy, a trace is little more than a "bag of 
bits".  Redundancy  is  inherent  in  human  and  current 
computer language and fundamental to the notion of syntax. 
Without redundancy, reliability cannot be assured, because 
alteration of a single bit anywhere completely changes the 
semantics  of  the  bag  of  bits.  Digital  systems  hardware, 
instruction sets, memory pointers, software, languages, and 
protocols all have redundancy. Computers often store traces 
of activities in the form of access, write, and creation dates, 
logs  produce  audit  trails,  files  often  have  date  and  time 
indicators within records they store, and sequences of writes 
leave traces in the structures of links between allocated areas 
within the file  system. Network use often produces  traces 
including time stamps and URL records on intermediate and 
end  computers,  records  of  address  lookups,  flow  logs, 
performance  impact  indicators,  and  interference  patterns. 
[5][6][7] In short, there are many traces in computer systems 
and networks of activities that take place. The challenge to 
the  DFE  examiner  is  to  exploit  this  redundancy  to  find 
revealing  traces  and  confirmations  of  the  consistency  of 
those traces.

The science of digital forensic evidence examination is 
based on a set of theories that we call "information physics", 

a mathematical model, and a process by which the examiner 
makes  hypotheses  based  on  events  and  traces,  performs 
experiments or applies mathematical analysis to confirm or 
refute  the  hypotheses,  and  reports  results.[7]  To  do  these 
activities, the examiner uses tools that meet legal standards. 
Examination  is  broken  down  into  analysis,  interpretation, 
attribution,  and  reconstruction.  This  paper  focuses  on 
analysis, a process by which purely mathematical methods 
are used to identify consistency and inconsistency in traces 
and  events.  It  acts  only  on  traces  and  events  that  are 
formulated into logical statements that can be evaluated in 
conjunction with the traces.

Examination normally starts with assumptions based on 
events,  and  as  examination  proceeds,  hypotheses  are 
confirmed  or  refuted  based  on  traces.  It  exploits  the 
redundancy  inherent  in  the  bag  of  bits  to  identify  useful 
traces  based  on  structure  that  permits  further  analysis. 
Consistency  tends  to  lend  weight  to  the  accuracy  of  the 
asserted  events,  while  inconsistency  tends  to  refute  the 
asserted events. This is analogous to testing digital systems, 
and testing research may therefore be revealing.

A model of digital forensic evidence processing has been 
proposed [8] that identifies a schedule S over a set of {L, R, 
H, E, T, C, D, P, R}. A legal statute, or law (L) that may or 
may not be violated based on a logic expression L:{l1, ..., 
ln},  R:{r1,  ...,  rm},  LxR→[F|T],  where  the  truth  of  LxR 
implies that a charge of violation is warranted based on the 
defined legal  criteria.  (LxR V).  The hypothesized claims⇒  
(H=(H1,  ...,  Hn})  are  supported  by  hypothesized  event 
claims (E: {E1, ..., Eo}]), each of which consists of a set of 
indicated events from the set of all events [ e, e E*] within∀ ∈  
and outside of the digital system [ Ex E, Ex:(ex1 E*, ...,∀ ∈ ∈  
exp E*)], and that, when put together, purport to constitute∈  
a demonstration that the relevant legal requirement is met. 
There  is  the  set  of  possible  digital  traces  from  existing 
evidence T:(t1, ...,tq), each consisting of sets of values of sets 
of bits from the overall collection of bits available as digital 
forensic evidence. There is an internal consistency relation 
C:TxT→[-1...1] between traces that identifies the extent to 
which different traces are entirely consistent (1),  unrelated 
(0),  or  entirely  inconsistent  (-1)  with  each  other,  and  a 
demonstration  consistency  relation  D:TxE*→[-1..1],  that 
relates T and E and which may tend to confirm or refute 
hypothesized  event  sets  as  being  completely  inconsistent 
with traces (-1), completely consistent with traces (1), or not 
revealing  (0).  There  is  a  finite  set  of  forensic  procedures 
P:{p1, ..., pn}, p P, p→ c C, p→d D, p→c C, p→d D∀ ∈ ⊂ ⊂ ⊄ ⊄  
available to the forensic examiner. Procedures are normally 
implemented using methods and tools that have properties. 



Each procedure has the potential to act on any subset of T 
and to produce false positives (make), false negatives (miss), 
or  correctly  find the presence  or  absence of  subsets  of  C 
and/or  D.  Each  party  has  finite  resources  R:(T,$,C,E). 
Procedures consume time, money, capabilities, and expertise, 
and each of these elements limit the ability of the parties to 
fully examine the space of possibilities. A schedule sequence 
S:(s1,  s2,  ...), s S,  s:(l L,  r R,  h H,  e E,  t T,  c C,∀ ∈ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂  
d D, p P, r R, t, t') exists where t and t' bound the time⊂ ⊂ ⊂  
period for each step in the schedule, and only subsets of L, 
R, H, E, T, C, D, P, and R are available within that  time 
frame.

The sizes  of  elements  of  this  model  limit  analysis.  In 
particular, (1) L is finite and usually small; (2) R is typically 
simple  and  is  almost  always  expressible  as  a  boolean 
function with some metrics or thresholds; (3) H is defined by 
documents  provided,  and  the  courts  prevent  ongoing 
alteration H beyond some time within the schedule; (4) E can 
be very large, but in most cases it is  a few hundred to a few 
thousand events that are asserted, including statements made 
by the parties in depositions, testimony, and elsewhere; (5) T, 
in its totality, is the size of all sets of all states of all digital 
automata in existence at all relevant times. The total number 
of traces for m bits of data is then ∑(m!n)2n for n=1 to m, so 
nothing approaching complete coverage can be attained for 
almost any legal matter. C is the size of T squared, (|T|)2 and 
D is the size of T times the size of the power set of E. P is the 
size  of  all  possible  instruction  sequences  executed  on  all 
subsets  of  T  and  E  in  the  context  of  all  possible  initial 
memory states over a defined time. Thus C, D, and P are too 
large to realistically cover as well. R and S act to constrain 
process, and this effectively limits all aspects of efforts by 
the  examiner  to  gain  understandings  of  T,  C,  and  D and 
limits the application of P. A challenge identified in [8] is to 
identify subsets of P that tend to reveal elements of C and D 
with values near the extremes of 1 and -1 so as to support or 
refute events  in E and thus support  or refute claims in H 
which are ultimately probative with regard to V. This model 
will be used to discuss the analysis process.

II.FEATURE AND CHARACTERISTIC DETECTION, EXTRACTION, AND 
ANALYSIS

Starting with the results of [8], we know that for any real 
forensic examination, we will need to find  p P that allows⊂  
us to identify revealing c C and/or d D. In the "bag of bits"⊂ ⊂  
case,  we  can  review  computational  complexity  of  known 
procedures  and,  based  on  assumptions  about  syntax  and 
semantics,  particularize  the  procedures  and  complexity 
measures to specific consistency and inconsistency detection 
problems  relevant  to  the  matter  at  hand.  In  this  context, 
content has characteristics, like the file and data structures 
associated with the operating environment, and features, like 
the specific content of a file and its meaning in context. A 
structured file,  (e.g.,  a  document)  has  characteristics  (e.g., 
document  type,  syntax,  etc.)  and  features  (e.g.,  the 
combinations of  words,  spelling errors,  etc.).  Unstructured 
content, (e.g., a graphical image file) also has characteristics 
(e.g., pixel count) and features (e.g., areas that look like eyes, 
tables, or grass). Traces don't inherently have features other 

than total size or characteristics other than the specific bits 
included. But as assumptions are made based on events and 
analysis,  additional features and characteristics are defined 
which  may  be  consistent  or  inconsistent  with  the 
assumptions. The process of making and testing assumptions 
is largely the process of analysis..

A. Trace typing
Traces  are  commonly  "typed"  before  being  further 

analyzed.  The  syntax  of  the  media  typically  leads  to 
examining portions of traces  as groups,  such as blocks or 
other  subsequences.  This  in  turn leads  to  identification of 
likely types (e.g.,  file systems, files,  embedded files,  logs, 
messages, etc.). Typing effort is fundamental to the creation 
of further assumptions used for further examination of traces.

Typing of media is usually based on headers placed by 
FSMs to make identification and proper use easy. Headers 
may  be  inconsistent  with  the  content  or  otherwise 
misleading.  Header  or  other  meta-data  examination,  file 
names, and similar analysis are almost all O(1). For files or 
embedded  file  systems,  headers  are  also  used.  Type 
determination in the storage hierarchy is typically equivalent 
to spanning a tree. Other methods of typing include syntax 
analysis by (1) content examination using methods such as 
the  "JDLR"  analysis  techniques  from  ForensiX  [9],  (2) 
statistical analysis such as information content measures [10] 
or more specific  statistics,  which are normally linear  time 
O(n+m) for n different types and m bits of content, or (3) 
FSMs  built  to  parse  different  syntaxes,  such  as  multiple 
lexical analyzers, which is also O(m+n).

Inconsistencies  within  the  type  information  is 
problematic in that (1) there are many possible causes, and 
(2) without a consistent set of types, the analysis is reduced 
to all possible interpretations of all possible traces. In most 
legal matters, type information is indicated by events (e.g., 
files are asserted to be from an party's  Windows system). 
This establishes  an event that  can be tested as to type by 
analysis of traces. However, consistency of traces with the 
events,  does  not  make  the  result  unique.  There  could  be 
covert  content,  the  content  might  have  different 
interpretation  in  a  different  context,  and  the  event 
information may be incomplete or imprecise. Virtualization 
may be used or the system might have been bootstrapped 
from different media at different times. Thus the underlying 
FSMs operating are not definitive, even though consistency 
is maintained within the context observed.

B. Exact copies, regular expressions, and similar analyses
For  obvious  redundancy,  (i.e.,  exact  copies  at  defined 

locations), finding duplicates is an O(n) bit sequence match 
with C=1 or C=-1. A consistency measure more tolerant of 
deviations might identify 1=identical, -1=inverted, and linear 
interpolation,  but  this  is  problematic  in  that  in  the  non-
continuous digital space, a single bit can completely change 
the syntax and semantics  of  content,  a  single shifted byte 
may  produce  C=0  or  thereabouts,  as  will  compressed  or 
encrypted data. Searching for a string within a larger string is 
also  O(t+k)  where  t  is  |trace|  and  k  is  |key|.[11]  This 
constitutes a substantial portion of the current digital forensic 



analysis  effort  for  cases  involving  child  pornography, 
possession  of  contraband  information,  or  similar  sorts  of 
offenses. Searching the same trace for multiple strings or sets 
of patterns that can be written as regular expressions can be 
linear  time  through  the  sequential  machines  described  in 
[11], but many tools do not use these methods effectively and 
end up at O(n(k+t)) where n is the number of expressions 
being sought instead of at O(nk+t). A wide range of similar 
search methods that gain faster time for repetitive searches of 
the  same  traces  are  identified  in  [12]  and  have  been 
substantially improved upon since then. Hashing and similar 
methods make searching for keys O(k) after initial O(t) hash 
table creation. While regular expressions are often useful for 
structured text, for other formats this is far less effective.

Any Backus-Naur Form (BNF) syntax [13] can be parsed 
by an LALR parser [12] in O(n) time. This applies to most 
Internet  RFCs  and  many  other  language  specifications  in 
widespread use. Parsing operations may yield type C and D 
inconsistencies.  For  forensic  purposes,  each  syntactic 
component at each level of recursion should be linked to the 
trace it  reflects.  This is  not commonly done today. In  the 
process  of  parsing,  errors  may  occur.  These  errors 
demonstrate either a parsing procedure fault or a type C or D 
inconsistency. If these errors stop the processing of the trace, 
the examiner must find another way to continue. There may 
be many ways of interpreting a trace in light of such faults, 
and this adds to the complexity of analysis.  In general,  it 
makes parsing as complex as the possible interpretations of 
languages.  Complexity  results  here  do  not  apply  to  error 
handling in LALR parsing, and current tools do not handle 
such errors well for forensic purposes.

For  unstructured  data  (e.g.,  pictures,  sounds, 
representations of real-world content captured as depictions 
through conversions), exact matches are far more interesting. 
The notion of parsing a picture is very different from that of 
parsing structured data, but some forms of parsing are used 
(e.g.,  detect  lines,  identify  shapes,  etc.).  These  analysis 
methods  are  completely  different  than  structured  data 
methods,  few  of  them  have  linear  complexity  with  the 
number of bits in the image, and the notion of consistency is 
far  more  complex,  going  to  the  issue  of  what  the  image 
represents rather than the mere presence of bits in locations. 
Identical copies can be detected with methods that are linear 
time for a fixed set of comparisons, such as the search for 
known images of child pornography, graphical images like 
icons, and tagents placed in to digital output by printers and 
then  scanned  in  using  higher  resolution  imaging  devices. 
[14] But these are the exceptions rather than the rule for such 
analysis. As a simple experiment, we repeatedly scanned the 
same piece of  paper  9  times on the same flatbed scanner 
without delay and without moving the paper. Each resulting 
scan file varied in length and content from every other scan 
file.  At  the  level  of  16  byte  chunks,  the  files  differed  in 
99.96% of chunks. The first 256 bytes were identical headers 
in all of the scans, and only 153 other chunks matched across 
files,  these  matches  distributed  throughout  the  files  and 
across different pairs of files.  Even the same input device 
yields  different  outputs  for  the  same  source,  so  exact 
matching is clearly a problem for these sorts of inputs.

C. Equivalent content in different formats
To  search  for  equivalent  content  across  formats  and 

inexact matches, equivalence classes are defined and traces 
mapped into the classes. If the classes can be parsed by an 
LALR parser, linear time results apply as above, but not all 
equivalence classes can be so specified. Even date and time 
stamps come in many formats, and since timing and ordering 
is a key issue in many legal matters, such equivalence classes 
are important to be able to map. Even in similar records like 
"Received:" message headers a standard format is not always 
used,  time  zone  indicators  are  optional,  offsets  from 
universal  coordinated  time  (UTC)  are  sometimes  in 
incompatible  formats,  and  ordering  is  affected  by 
differentials  of  time  settings  across  systems.  Parsing 
anomalies constitute inconsistencies between the traces and 
events,  but  inconsistencies  between  messages  within 
archives  may  also  show inconsistencies  with  events.  The 
complexity of detecting format differences depends on the 
specification of  the format.  In  most  structured  data cases, 
time to detect pattern inconsistencies is linear in the number 
of  patterns,  since the patterns  are specified in  BNF or  an 
equivalent format. But comparison of subsets of trace (e.g., 
different emails within a mailbox) to find commonalities is 
far more complex because each has to be compared to each 
other.  This  is  O(pt2)  where  t  is  the  number  of  trace 
subsequences examined and p is the number of partial traces 
per trace subset. 

The  most  common  approach  to  reconciling  different 
formats for value comparison is "normalization". A common 
format  commensurable  from  other  formats  is  chosen  and 
traces  are  translated  to  the  common  format.  For  ordered 
entities, like date and time stamps, where there is a strict "≤" 
relation, selecting a common format  such as "YYYY-MM-
DD-HH:mm:ss.pppp..." is particularly useful because it sorts 
both alphabetically and numerically to the same ordering as 
time. Similar methods can be applied for ordering in other 
cases  where  there  is  a  ≤  relation.  Sorting  its  then  O(cn 
log(n)) where c is the complexity of the comparison method 
used  to  determine  the  ordering  relationship.  A  database 
approach may help in some cases (e.g., the fields within a 
header),  but  more complex analytical processes will  likely 
not  gain  advantages.  The  transformations  of  traces  into 
normalized forms makes them more suitable for analysis, but 
without the ability to link them back to the original traces, 
they  are  problematic  for  forensic  purposes.  Also,  the 
normalization  process  should  track  differences  in  original 
formats  to  help  find  inconsistencies  between  traces  (e.g., 
events  assert  traces  made  by  the  same  mechanism  have 
format differences is a D inconsistency).

D. Generating characteristics and features of traces
For structured data, even if formats don't violate syntax 

specifications,  content may vary and provide indicators  of 
origins.  (e.g.,  name  and  version  number,  message  ID,  IP 
address,  field  formats,  etc.).  These  may  be  examined  by 
searching for presence or absence, typically using a regular 
expression  or  similar  descriptive  method  and  executing  a 
linear  time  detection  algorithm.  This  generates  sets  of 
characteristics  of  traces  that  can be  related.  Searching for 



characteristics over the same trace is the sum of the search 
times, and is linear in the combined search pattern sizes for 
LALR  parses  and  the  total  size  of  the  traces  examined. 
Characteristics  and  features  are  often  recursively  sought 
(e.g.,  message  files  generate  message  separators,  header 
areas,  and  bodies;  header  areas  generate  ordered  headers, 
headers  generate  fields,  etc.).  Different  characteristics  and 
features apply to each of the different parsed items and thus 
different algorithms are applied to perform different sorts of 
consistency  tests  for  each  syntax  element.  Cross-item 
consistency testing is also feasible (e.g., separator date and 
time stamps vs. "Received:" header date and time stamps). 
Automated  mechanisms  usually  have  structured  syntax, 
while humans tend to have less structured and more error-
prone  syntax.  People  tend  to  be  good  at  differentiating 
obvious automated from obvious human messages, but this 
may  be  very  time  consuming  for  large  collections.  As  a 
result,  automation  may  be  fruitfully  applied  to  try  to 
differentiate  these.  These  are  typically  LALR parses  with 
resulting linear complexity O(n) for trace length n, but they 
must properly handle errors to differentiate automated from 
human mechanisms. Reliability figures for such analysis are 
not presently available.

Human syntactic elements are used when people generate 
content,  but  while  standard language analysis  has  become 
quite advanced in recent years, analysis of messages used in 
messaging  systems  today  has  grown  to  include  specific 
syntactic elements used for short message service (SMS) and 
similar  low  bandwidth  or  hard-to-enter  data  mechanisms, 
such  as  cellular  phones  and  instant  messaging  systems. 
These messages tend to have abbreviated syntactic elements. 
LOL  in  parsing  them.  A linguistic  database  and  syntax 
structure analysis capability has yet  to be demonstrated to 
facilitate this sort of analysis for forensic purposes.

A common thread among many of these methods is to 
break  the  content  into  smaller  chunks,  which  we  will 
consider  syntax  elements,  or  symbols  in  the  symbol  set. 
Matches  between  counts  and  frequencies  of  symbols  are 
commonly used to detect  similar  messages.  Symbol pairs, 
triples, and more generally, n-tuples may be sought to find 
similar  phrasing.  This  is  particularly  useful  for  finding 
common sequences across messages. Some pseudo-random 
generation  methods  may  be  detected  by  looking  for 
sequences  containing  one  of  each  of  sets  of  different 
collections  of  symbols,  such  as  words,  in  sequences.  In 
essence, all of these techniques are of complexity O(n log n) 
where n is the number of symbols, for any given symbol set. 
But  the  complexity  goes  up  as  the  number  of  different 
symbol  sets  increases.  Since  the  total  number  of  possible 
symbol sets is O(m) where m is the number of bit sequences 
that  can  be  chosen  for  symbols,  and  the  number  of  bit 
sequences identifiable is the size of the space of traces, the 
complexity of the general class of all such matches is too 
high to be practical.

For unstructured data, such as graphical images, different 
sorts  of  characteristics  are  generated.  [15][16][7]  These 
unstructured data features are quantifiable in fixed time or 
linear  time in  the  number  of  pixels  in  the  image.  Recent 
results  from  companies  like  Google  have  provided  linear 

time parallelizable image characteristic analysis and searches 
for terms like "house" or "dog", these based largely on recent 
development in human cognition. [17]  But these methods, 
while useful for generating initial identifications that can be 
examined in more depth, are not forensically viable today 
because  the  mechanisms  that  drive  them  are  not 
characterized in terms of reliability for purpose.

For graphical images, derivative traces may be generated 
by analytical processes and grouped together as well. Just as 
we  can  build  up  syntactic  entities  in  artificial  data  sets, 
naturally  created  data  can  be  built  up  from  lower  level 
components to higher level syntactic entities which can be 
compared  for  consistency.  For  example,  shadow detection 
has  been  used  to  determine  whether  images  areas  are 
consistent  in  terms  of  apparent  sources  of  lighting.  [18] 
Searching for tagents associated with particular printer types 
and particularization to specific printers with particular time 
stamps [14] is an example where image data is structured 
after  low-level  traces  are  translated  into  higher  level 
syntactic elements. The Google approach to image analysis 
may  also  be  used  to  identify  features  [17]  and  these 
analytical  results  may  be  compared  to  events  such  as 
statements about the appearance of an object to help guide 
the investigator in identifying type D inconsistencies.

Features that are not so easily analyzed include properties 
of  the image used for  human comprehension and features 
that  can  be  mathematically  characterized  but  not  easily 
located by automation. For example, shadows in images may 
be used to show the source of lighting, and the apex of the 
features  and  their  shadows  can  be  used  to  determine  if 
different light sources are involved in different parts of an 
image but they are hard to detect automatically; reflections 
from eyeballs,  silver  spoons,  and  similar  highly  reflective 
surfaces in pictures can be mapped into images of what is 
reflected  in  them  and  compared  to  each  other  to  find 
composite images, but the analysis and identification of these 
features  is  quite  complex and not  highly automated today 
[18]; finding areas within images and converting them into 
maps  of  real-world  objects  takes  more  than  linear  time; 
analysis  of  facial  features  and  other  similar  biometrics 
requires substantial analysis to find the features, even though 
mapping into a database of features is then relatively fast; 
and tampering detection by blur estimation has been shown 
successful.  [19]  Image  authentication  systems  have  been 
proposed  for  tracing  images  to  sources,  and  detection  of 
sources  have  been  experimentally  performed  with  limited 
success.  [20]  The complexity  of  these  methods  is  greatly 
reduced  when  manufacturers  assist  in  the  creation  of 
identifying transforms within their devices.

III.CONSISTENCY ANALYSIS OF CHARACTERISTICS AND FEATURES

Once  characteristics  and  features  are  identified, 
extracted,  and  analyzed  in  preliminary  ways,  whether  for 
structured  or  unstructured  data,  the  analysis  focuses  on 
identifying  consistencies  and  inconsistencies  of  those 
characteristics and features in the general sense, and in many 
cases, the more specific correlation of identical, similar, and 
related  types  of  features  and  characteristics  within  and 
between  content  and  sources.  There  are  many  different 



approaches that may be used, and each has the potential to 
point out different consistencies and inconsistencies.

A. Ordering assumptions and detecting out of order entries
Time is a physical reality that impacts almost every case 

because most legal issues involve causality in one form or 
another.  Such simple rules as "A caused B implies that  A 
precedes B in time" are very powerful when there is a great 
deal of data related to times and events. Time is sometimes 
complicated  in  digital  forensic  analysis  because  the  time 
bases that create time stamps within different systems and 
mechanisms may be of different formats, be from different 
time zones, have different clock skews from accurate times 
as  defined  by standards  bodies,  and  so  forth.  In  addition, 
time  sequences  within  computers  may be  complicated  by 
prior  state,  loads,  external  and  internal  states,  inputs,  and 
processing,  user  intervention,  and  alteration  of  traces 
between their origin and delivery to the examiner.

When regular expressions can be used to describe times, 
extracting times is  O(n) in  the trace length.  Detecting the 
presence  of  out-of-order  entries  is  O(nc)  where  c  is  the 
complexity of the comparison operation and n is the length 
of the trace. The number of possible original orderings is, in 
general,  the set  of all  graphs with nodes corresponding to 
time  stamps.  This  means  that  rehabilitating  evidence  by 
identifying mechanisms that cause ordering failure may be 
O(n!) where n is the number of times. Mechanisms like file 
locks, which force sequential output, may cause processes to 
output in a different order than the order of the time stamps 
they generate, which forces a looser notion of inconsistency 
based on ordering that allows for finite time differences and 
results in a POset rather than a strict ordering.

Recent work in the analysis of overlay patterns of disk 
writes shows that ordering of file writes can be limited by 
examining existing patterns of file storage areas on disk. [5] 
More  detailed  analysis  of  time sequencing  from traces  to 
validate digital time-stamps has also been done. [6]

B. Sourcing and travel patterns
Sourcing  and  travel  patterns  for  messages  based  on 

headers have been analyzed and they require O(n2/m) time 
and  space  where  n  is  the  number  hops  all  messages 
combined  took  and  m is  the  number  of  messages  [21][7] 
Sources,  destinations,  parsed  subsets,  or  other  traces  may 
also  be  used  in  conjunction  with  timing  information  to 
identify such things as performance effects and other similar 
damage-related issues asserted to be self-identifying from the 
traces. [21] In this case, the generation of the relevant data is 
easy, but finding a process that might determine the effect 
requires  some sort  of  averaging  or  other  consolidation  of 
traces  and  analysis  of  a  relationship  between  the  events 
claimed and the traces.

C. Consistency checks across related records
Consistency  checks  across  related  records  has  been 

explored  [22][7]  and  time  to  compare  records  once 
associated is linear with the number of entries after sorting, 
or O(xn log(n))  in total  where x is  the time to associated 
records.  When identical  indicators  are  present,  X is  fixed 

time  and  the  sort  is  the  limiting  factor.  Audit  trails 
correlation  was  undertaken  in  the  1980s [22]  with  results 
indicating that creating false but consistent audit trails from 
existing audit trails is quite difficult.

D. Anchor events and external correlation
Anchor events and external correlation allows traces to 

be tied across systems and to third parties that the examiner 
can  testify  about.  [21]  Time  consistency  between  records 
then helps to provide internal trace consistency, geographic 
location, or time zone. Differentials and jitter in time analysis 
has also been considered. [7] The complexity of doing these 
sorts of machine-to-machine differentials of records across 
machines is O(n) where n is the number of time indicators 
used, assuming that the time indicators are reconcilable to a 
common format in O(1) time.

E. Differentials and jitter
For time-related analysis, the common format used for 

reconciliation of records must also be reconciled with time 
zone  differences  including  time  zone  change  times.  It  is 
prudent  practice  to  translate  times  into  UTC  to  avoid 
translation  and  comparison  problems  when  multiple  time 
zones  are  in  play.  Time  zones  are  not  always  uniquely 
reconcilable,  and  this  leads  to  exponential  growth  in  the 
number of POsets within the delta of the time zones.  The 
same is true for jitter or system-to-system differences, which 
may also change from time to time.

Differential time is useful in reconciling ordering issues. 
A standard initial time, such as the zero time of a common 
clock (Jan 1, 1401 is commonly used), is used as a zero, all 
times are translated into offsets  from the zero  date  at  the 
maximum clock granularity desired, and times are expressed 
in clock ticks from the zero time. Translation into a common 
time frame is O(1) for  each time indicator.  In  analysis of 
traces, sequences of traces are associated with time offsets 
from prior  or subsequent trace. This is then revealing with 
respect to sequencing and timing, and allows the calculation 
of jitter in O(n) time where n is the number of time stamps.

The  correlation  of  these  traces  other  than  for  strict 
ordering is  problematic.  Gathering statistics on means and 
deviations are O(n), but these are not particularly well suited 
to the types  of  errors that  occur in digital  systems, which 
generally fail in step functions rather than having deviations 
from a norm based on random stochastic processes. In cases 
we have seen, there are many instances of messages delayed 
by days purported to be delivered by the same process that, 
during the same time frame, delivered seemingly equivalent 
messages through the same paths in a matter of seconds. In 
one example, a message was delivered a second time after 6 
months  of  delay  between its  original  delivery.  This  is  an 
inconsistency  with  "normal"  behavior,  but  did  not,  in  the 
particular instance, indicate anything nefarious. It appeared 
to be the result of a restoration from an old backup where 
residual data from the mail transfer agent triggered a resend 
of and old, already sent message.



IV.BUILDING SIEVES AND COUNTING THINGS

Much of  the work of  forensic  analysis  consists  of  the 
examiner  building  sieves  to  extract  specific  traces  from 
larger traces and counting different things within traces.

A. Derivative traces
In  many  cases,  the  form  of  original  evidence  is 

incompatible  with  efficient  analysis,  but  translation  into  a 
different format greatly improves efficiency. The date and 
time  stamp  example  above  is  only  one  example  of  the 
general  method  of  creating  derived  traces  that  are  back-
referenced  to  original  traces,  and  performing  analysis  on 
derived traces.

B. Translations
Common translations include, without limit, translations 

into other character sets (e.g., EBCDIC to ASCII), multi-line 
to single-line translations for continuation lines, removal of 
hyphens used at the end of a line to continue a word on the 
next line, and combining sequences of separator characters 
into a single "TAB" character. All of these are O(n) in the 
length of the trace, but all depend on assumptions about the 
type and syntax of the trace.

C. Counting things
Many  analytical  processes  in  digital  forensics  involve 

counting,  and there are many common counting errors.[7] 
Counting is  generally  O(1)  complexity  up  to  a  maximum 
threshold, beyond which the mechanisms for counting fail 
and produce either errors or wrong results.

D. Combined mechanisms and error handling
When mechanisms are combined and each can produce 

errors, some of which are not automatically detectable (e.g., 
a search specification was imperfect), the combined results 
may  produce  undetected  errors.  As  sieves,  counts,  and 
derived traces are combined into more and more complicated 
instruments, these instruments tend to become increasingly 
fragile. Error handling is currently of unknown complexity.

V. SUMMARY, CONCLUSIONS, ANDE FURTHER WORK

Clearly  the  study  of  the  use  of  redundant  traces  for 
consistency is only in its infancy and the available methods 
for  analysis  and  correlation  of  these  redundant  traces  are 
already substantial.  At a  fundamental  level,  it  seems clear 
that  redundancy  is  key  to  consistency  analysis  and  that 
systematic  identification  and  analysis  of  redundancy  may 
lead to a more complete theory and practice of consistency 
analysis.

This paper only covers the rudimentary forms of analysis 
in  widespread  use  today  and  further  work  is  needed  to 
characterize  other  classes  of  consistency  checking  in 
analysis,  including  analysis  of  effects  of  parallelism, 
detection  is  similarity  rather  than  more  precise  matches, 
addressing  issues  of  mixed  symbol  sets  and  other  similar 
environmental factors, analysis of possible consistencies and 
inconsistencies  of  missing traces  and  use  of  this  to  guide 
future events, validation requirements for the methods used.
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