
Analysis of redundant traces for consistency
With examples from electronic messaging and graphical images

Fred Cohen
California Sciences Institute and

Fred Cohen & Associates
Livermore, CA 94550

fc at all dot net

Abstract—This paper is about the detection of inconsistencies and
consistencies in redundant traces to detect forgeries, demonstrate
forensic soundness, and lend weight to assertions made by forensic
examiners performing analysis.

Keywords-digital forensics, trace consistency, analysis

I. INTRODUCTION, OVERVIEW, AND BACKGROUND

The requirements for the use of scientific evidence
through expert opinion in the United States and throughout
the world are based on principles and specific rulings that
dictate, in essence, that the evidence be (1) beyond the
normal knowledge of non-experts, (2) based on a scientific
methodology that is testable, (3) characterized in specific
terms with regard to reliability and rates of error, (4) that the
tools used be properly tested and calibrated, and (5) that the
scientific methodology is properly applied by the expert as
demonstrated by the information provided by the expert.
[1][2][3][4] This paper offers an approach to meeting these
criteria for digital forensic evidence (DFE).

Digital forensic evidence comes in the form of "traces".
A trace is a sequence of bits that are put forth by a party and
asserted as being the result of some process undertaken on
some digital system. An "event" is a statement, document, or
any other item of import to the case.

Without redundancy, a trace is little more than a "bag of
bits". Redundancy is inherent in human and current
computer language and fundamental to the notion of syntax.
Without redundancy, reliability cannot be assured, because
alteration of a single bit anywhere completely changes the
semantics of the bag of bits. Digital systems hardware,
instruction sets, memory pointers, software, languages, and
protocols all have redundancy. Computers often store traces
of activities in the form of access, write, and creation dates,
logs produce audit trails, files often have date and time
indicators within records they store, and sequences of writes
leave traces in the structures of links between allocated areas
within the file system. Network use often produces traces
including time stamps and URL records on intermediate and
end computers, records of address lookups, flow logs,
performance impact indicators, and interference patterns.
[5][6][7] In short, there are many traces in computer systems
and networks of activities that take place. The challenge to
the DFE examiner is to exploit this redundancy to find
revealing traces and confirmations of the consistency of
those traces.

The science of digital forensic evidence examination is
based on a set of theories that we call "information physics",

a mathematical model, and a process by which the examiner
makes hypotheses based on events and traces, performs
experiments or applies mathematical analysis to confirm or
refute the hypotheses, and reports results.[7] To do these
activities, the examiner uses tools that meet legal standards.
Examination is broken down into analysis, interpretation,
attribution, and reconstruction. This paper focuses on
analysis, a process by which purely mathematical methods
are used to identify consistency and inconsistency in traces
and events. It acts only on traces and events that are
formulated into logical statements that can be evaluated in
conjunction with the traces.

Examination normally starts with assumptions based on
events, and as examination proceeds, hypotheses are
confirmed or refuted based on traces. It exploits the
redundancy inherent in the bag of bits to identify useful
traces based on structure that permits further analysis.
Consistency tends to lend weight to the accuracy of the
asserted events, while inconsistency tends to refute the
asserted events. This is analogous to testing digital systems,
and testing research may therefore be revealing.

A model of digital forensic evidence processing has been
proposed [8] that identifies a schedule S over a set of {L, R,
H, E, T, C, D, P, R}. A legal statute, or law (L) that may or
may not be violated based on a logic expression L:{l1, ...,
ln}, R:{r1, ..., rm}, LxR→[F|T], where the truth of LxR
implies that a charge of violation is warranted based on the
defined legal criteria. (LxR V). The hypothesized claims⇒
(H=(H1, ..., Hn}) are supported by hypothesized event
claims (E: {E1, ..., Eo}]), each of which consists of a set of
indicated events from the set of all events [e, e E*] within∀ ∈
and outside of the digital system [Ex E, Ex:(ex1 E*, ...,∀ ∈ ∈
exp E*)], and that, when put together, purport to constitute∈
a demonstration that the relevant legal requirement is met.
There is the set of possible digital traces from existing
evidence T:(t1, ...,tq), each consisting of sets of values of sets
of bits from the overall collection of bits available as digital
forensic evidence. There is an internal consistency relation
C:TxT→[-1...1] between traces that identifies the extent to
which different traces are entirely consistent (1), unrelated
(0), or entirely inconsistent (-1) with each other, and a
demonstration consistency relation D:TxE*→[-1..1], that
relates T and E and which may tend to confirm or refute
hypothesized event sets as being completely inconsistent
with traces (-1), completely consistent with traces (1), or not
revealing (0). There is a finite set of forensic procedures
P:{p1, ..., pn}, p P, p→ c C, p→d D, p→c C, p→d D∀ ∈ ⊂ ⊂ ⊄ ⊄
available to the forensic examiner. Procedures are normally
implemented using methods and tools that have properties.

Each procedure has the potential to act on any subset of T
and to produce false positives (make), false negatives (miss),
or correctly find the presence or absence of subsets of C
and/or D. Each party has finite resources R:(T,$,C,E).
Procedures consume time, money, capabilities, and expertise,
and each of these elements limit the ability of the parties to
fully examine the space of possibilities. A schedule sequence
S:(s1, s2, ...), s S, s:(l L, r R, h H, e E, t T, c C,∀ ∈ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂
d D, p P, r R, t, t') exists where t and t' bound the time⊂ ⊂ ⊂
period for each step in the schedule, and only subsets of L,
R, H, E, T, C, D, P, and R are available within that time
frame.

The sizes of elements of this model limit analysis. In
particular, (1) L is finite and usually small; (2) R is typically
simple and is almost always expressible as a boolean
function with some metrics or thresholds; (3) H is defined by
documents provided, and the courts prevent ongoing
alteration H beyond some time within the schedule; (4) E can
be very large, but in most cases it is a few hundred to a few
thousand events that are asserted, including statements made
by the parties in depositions, testimony, and elsewhere; (5) T,
in its totality, is the size of all sets of all states of all digital
automata in existence at all relevant times. The total number
of traces for m bits of data is then ∑(m!n)2n for n=1 to m, so
nothing approaching complete coverage can be attained for
almost any legal matter. C is the size of T squared, (|T|)2 and
D is the size of T times the size of the power set of E. P is the
size of all possible instruction sequences executed on all
subsets of T and E in the context of all possible initial
memory states over a defined time. Thus C, D, and P are too
large to realistically cover as well. R and S act to constrain
process, and this effectively limits all aspects of efforts by
the examiner to gain understandings of T, C, and D and
limits the application of P. A challenge identified in [8] is to
identify subsets of P that tend to reveal elements of C and D
with values near the extremes of 1 and -1 so as to support or
refute events in E and thus support or refute claims in H
which are ultimately probative with regard to V. This model
will be used to discuss the analysis process.

II.FEATURE AND CHARACTERISTIC DETECTION, EXTRACTION, AND
ANALYSIS

Starting with the results of [8], we know that for any real
forensic examination, we will need to find p P that allows⊂
us to identify revealing c C and/or d D. In the "bag of bits"⊂ ⊂
case, we can review computational complexity of known
procedures and, based on assumptions about syntax and
semantics, particularize the procedures and complexity
measures to specific consistency and inconsistency detection
problems relevant to the matter at hand. In this context,
content has characteristics, like the file and data structures
associated with the operating environment, and features, like
the specific content of a file and its meaning in context. A
structured file, (e.g., a document) has characteristics (e.g.,
document type, syntax, etc.) and features (e.g., the
combinations of words, spelling errors, etc.). Unstructured
content, (e.g., a graphical image file) also has characteristics
(e.g., pixel count) and features (e.g., areas that look like eyes,
tables, or grass). Traces don't inherently have features other

than total size or characteristics other than the specific bits
included. But as assumptions are made based on events and
analysis, additional features and characteristics are defined
which may be consistent or inconsistent with the
assumptions. The process of making and testing assumptions
is largely the process of analysis..

A. Trace typing
Traces are commonly "typed" before being further

analyzed. The syntax of the media typically leads to
examining portions of traces as groups, such as blocks or
other subsequences. This in turn leads to identification of
likely types (e.g., file systems, files, embedded files, logs,
messages, etc.). Typing effort is fundamental to the creation
of further assumptions used for further examination of traces.

Typing of media is usually based on headers placed by
FSMs to make identification and proper use easy. Headers
may be inconsistent with the content or otherwise
misleading. Header or other meta-data examination, file
names, and similar analysis are almost all O(1). For files or
embedded file systems, headers are also used. Type
determination in the storage hierarchy is typically equivalent
to spanning a tree. Other methods of typing include syntax
analysis by (1) content examination using methods such as
the "JDLR" analysis techniques from ForensiX [9], (2)
statistical analysis such as information content measures [10]
or more specific statistics, which are normally linear time
O(n+m) for n different types and m bits of content, or (3)
FSMs built to parse different syntaxes, such as multiple
lexical analyzers, which is also O(m+n).

Inconsistencies within the type information is
problematic in that (1) there are many possible causes, and
(2) without a consistent set of types, the analysis is reduced
to all possible interpretations of all possible traces. In most
legal matters, type information is indicated by events (e.g.,
files are asserted to be from an party's Windows system).
This establishes an event that can be tested as to type by
analysis of traces. However, consistency of traces with the
events, does not make the result unique. There could be
covert content, the content might have different
interpretation in a different context, and the event
information may be incomplete or imprecise. Virtualization
may be used or the system might have been bootstrapped
from different media at different times. Thus the underlying
FSMs operating are not definitive, even though consistency
is maintained within the context observed.

B. Exact copies, regular expressions, and similar analyses
For obvious redundancy, (i.e., exact copies at defined

locations), finding duplicates is an O(n) bit sequence match
with C=1 or C=-1. A consistency measure more tolerant of
deviations might identify 1=identical, -1=inverted, and linear
interpolation, but this is problematic in that in the non-
continuous digital space, a single bit can completely change
the syntax and semantics of content, a single shifted byte
may produce C=0 or thereabouts, as will compressed or
encrypted data. Searching for a string within a larger string is
also O(t+k) where t is |trace| and k is |key|.[11] This
constitutes a substantial portion of the current digital forensic

analysis effort for cases involving child pornography,
possession of contraband information, or similar sorts of
offenses. Searching the same trace for multiple strings or sets
of patterns that can be written as regular expressions can be
linear time through the sequential machines described in
[11], but many tools do not use these methods effectively and
end up at O(n(k+t)) where n is the number of expressions
being sought instead of at O(nk+t). A wide range of similar
search methods that gain faster time for repetitive searches of
the same traces are identified in [12] and have been
substantially improved upon since then. Hashing and similar
methods make searching for keys O(k) after initial O(t) hash
table creation. While regular expressions are often useful for
structured text, for other formats this is far less effective.

Any Backus-Naur Form (BNF) syntax [13] can be parsed
by an LALR parser [12] in O(n) time. This applies to most
Internet RFCs and many other language specifications in
widespread use. Parsing operations may yield type C and D
inconsistencies. For forensic purposes, each syntactic
component at each level of recursion should be linked to the
trace it reflects. This is not commonly done today. In the
process of parsing, errors may occur. These errors
demonstrate either a parsing procedure fault or a type C or D
inconsistency. If these errors stop the processing of the trace,
the examiner must find another way to continue. There may
be many ways of interpreting a trace in light of such faults,
and this adds to the complexity of analysis. In general, it
makes parsing as complex as the possible interpretations of
languages. Complexity results here do not apply to error
handling in LALR parsing, and current tools do not handle
such errors well for forensic purposes.

For unstructured data (e.g., pictures, sounds,
representations of real-world content captured as depictions
through conversions), exact matches are far more interesting.
The notion of parsing a picture is very different from that of
parsing structured data, but some forms of parsing are used
(e.g., detect lines, identify shapes, etc.). These analysis
methods are completely different than structured data
methods, few of them have linear complexity with the
number of bits in the image, and the notion of consistency is
far more complex, going to the issue of what the image
represents rather than the mere presence of bits in locations.
Identical copies can be detected with methods that are linear
time for a fixed set of comparisons, such as the search for
known images of child pornography, graphical images like
icons, and tagents placed in to digital output by printers and
then scanned in using higher resolution imaging devices.
[14] But these are the exceptions rather than the rule for such
analysis. As a simple experiment, we repeatedly scanned the
same piece of paper 9 times on the same flatbed scanner
without delay and without moving the paper. Each resulting
scan file varied in length and content from every other scan
file. At the level of 16 byte chunks, the files differed in
99.96% of chunks. The first 256 bytes were identical headers
in all of the scans, and only 153 other chunks matched across
files, these matches distributed throughout the files and
across different pairs of files. Even the same input device
yields different outputs for the same source, so exact
matching is clearly a problem for these sorts of inputs.

C. Equivalent content in different formats
To search for equivalent content across formats and

inexact matches, equivalence classes are defined and traces
mapped into the classes. If the classes can be parsed by an
LALR parser, linear time results apply as above, but not all
equivalence classes can be so specified. Even date and time
stamps come in many formats, and since timing and ordering
is a key issue in many legal matters, such equivalence classes
are important to be able to map. Even in similar records like
"Received:" message headers a standard format is not always
used, time zone indicators are optional, offsets from
universal coordinated time (UTC) are sometimes in
incompatible formats, and ordering is affected by
differentials of time settings across systems. Parsing
anomalies constitute inconsistencies between the traces and
events, but inconsistencies between messages within
archives may also show inconsistencies with events. The
complexity of detecting format differences depends on the
specification of the format. In most structured data cases,
time to detect pattern inconsistencies is linear in the number
of patterns, since the patterns are specified in BNF or an
equivalent format. But comparison of subsets of trace (e.g.,
different emails within a mailbox) to find commonalities is
far more complex because each has to be compared to each
other. This is O(pt2) where t is the number of trace
subsequences examined and p is the number of partial traces
per trace subset.

The most common approach to reconciling different
formats for value comparison is "normalization". A common
format commensurable from other formats is chosen and
traces are translated to the common format. For ordered
entities, like date and time stamps, where there is a strict "≤"
relation, selecting a common format such as "YYYY-MM-
DD-HH:mm:ss.pppp..." is particularly useful because it sorts
both alphabetically and numerically to the same ordering as
time. Similar methods can be applied for ordering in other
cases where there is a ≤ relation. Sorting its then O(cn
log(n)) where c is the complexity of the comparison method
used to determine the ordering relationship. A database
approach may help in some cases (e.g., the fields within a
header), but more complex analytical processes will likely
not gain advantages. The transformations of traces into
normalized forms makes them more suitable for analysis, but
without the ability to link them back to the original traces,
they are problematic for forensic purposes. Also, the
normalization process should track differences in original
formats to help find inconsistencies between traces (e.g.,
events assert traces made by the same mechanism have
format differences is a D inconsistency).

D. Generating characteristics and features of traces
For structured data, even if formats don't violate syntax

specifications, content may vary and provide indicators of
origins. (e.g., name and version number, message ID, IP
address, field formats, etc.). These may be examined by
searching for presence or absence, typically using a regular
expression or similar descriptive method and executing a
linear time detection algorithm. This generates sets of
characteristics of traces that can be related. Searching for

characteristics over the same trace is the sum of the search
times, and is linear in the combined search pattern sizes for
LALR parses and the total size of the traces examined.
Characteristics and features are often recursively sought
(e.g., message files generate message separators, header
areas, and bodies; header areas generate ordered headers,
headers generate fields, etc.). Different characteristics and
features apply to each of the different parsed items and thus
different algorithms are applied to perform different sorts of
consistency tests for each syntax element. Cross-item
consistency testing is also feasible (e.g., separator date and
time stamps vs. "Received:" header date and time stamps).
Automated mechanisms usually have structured syntax,
while humans tend to have less structured and more error-
prone syntax. People tend to be good at differentiating
obvious automated from obvious human messages, but this
may be very time consuming for large collections. As a
result, automation may be fruitfully applied to try to
differentiate these. These are typically LALR parses with
resulting linear complexity O(n) for trace length n, but they
must properly handle errors to differentiate automated from
human mechanisms. Reliability figures for such analysis are
not presently available.

Human syntactic elements are used when people generate
content, but while standard language analysis has become
quite advanced in recent years, analysis of messages used in
messaging systems today has grown to include specific
syntactic elements used for short message service (SMS) and
similar low bandwidth or hard-to-enter data mechanisms,
such as cellular phones and instant messaging systems.
These messages tend to have abbreviated syntactic elements.
LOL in parsing them. A linguistic database and syntax
structure analysis capability has yet to be demonstrated to
facilitate this sort of analysis for forensic purposes.

A common thread among many of these methods is to
break the content into smaller chunks, which we will
consider syntax elements, or symbols in the symbol set.
Matches between counts and frequencies of symbols are
commonly used to detect similar messages. Symbol pairs,
triples, and more generally, n-tuples may be sought to find
similar phrasing. This is particularly useful for finding
common sequences across messages. Some pseudo-random
generation methods may be detected by looking for
sequences containing one of each of sets of different
collections of symbols, such as words, in sequences. In
essence, all of these techniques are of complexity O(n log n)
where n is the number of symbols, for any given symbol set.
But the complexity goes up as the number of different
symbol sets increases. Since the total number of possible
symbol sets is O(m) where m is the number of bit sequences
that can be chosen for symbols, and the number of bit
sequences identifiable is the size of the space of traces, the
complexity of the general class of all such matches is too
high to be practical.

For unstructured data, such as graphical images, different
sorts of characteristics are generated. [15][16][7] These
unstructured data features are quantifiable in fixed time or
linear time in the number of pixels in the image. Recent
results from companies like Google have provided linear

time parallelizable image characteristic analysis and searches
for terms like "house" or "dog", these based largely on recent
development in human cognition. [17] But these methods,
while useful for generating initial identifications that can be
examined in more depth, are not forensically viable today
because the mechanisms that drive them are not
characterized in terms of reliability for purpose.

For graphical images, derivative traces may be generated
by analytical processes and grouped together as well. Just as
we can build up syntactic entities in artificial data sets,
naturally created data can be built up from lower level
components to higher level syntactic entities which can be
compared for consistency. For example, shadow detection
has been used to determine whether images areas are
consistent in terms of apparent sources of lighting. [18]
Searching for tagents associated with particular printer types
and particularization to specific printers with particular time
stamps [14] is an example where image data is structured
after low-level traces are translated into higher level
syntactic elements. The Google approach to image analysis
may also be used to identify features [17] and these
analytical results may be compared to events such as
statements about the appearance of an object to help guide
the investigator in identifying type D inconsistencies.

Features that are not so easily analyzed include properties
of the image used for human comprehension and features
that can be mathematically characterized but not easily
located by automation. For example, shadows in images may
be used to show the source of lighting, and the apex of the
features and their shadows can be used to determine if
different light sources are involved in different parts of an
image but they are hard to detect automatically; reflections
from eyeballs, silver spoons, and similar highly reflective
surfaces in pictures can be mapped into images of what is
reflected in them and compared to each other to find
composite images, but the analysis and identification of these
features is quite complex and not highly automated today
[18]; finding areas within images and converting them into
maps of real-world objects takes more than linear time;
analysis of facial features and other similar biometrics
requires substantial analysis to find the features, even though
mapping into a database of features is then relatively fast;
and tampering detection by blur estimation has been shown
successful. [19] Image authentication systems have been
proposed for tracing images to sources, and detection of
sources have been experimentally performed with limited
success. [20] The complexity of these methods is greatly
reduced when manufacturers assist in the creation of
identifying transforms within their devices.

III.CONSISTENCY ANALYSIS OF CHARACTERISTICS AND FEATURES

Once characteristics and features are identified,
extracted, and analyzed in preliminary ways, whether for
structured or unstructured data, the analysis focuses on
identifying consistencies and inconsistencies of those
characteristics and features in the general sense, and in many
cases, the more specific correlation of identical, similar, and
related types of features and characteristics within and
between content and sources. There are many different

approaches that may be used, and each has the potential to
point out different consistencies and inconsistencies.

A. Ordering assumptions and detecting out of order entries
Time is a physical reality that impacts almost every case

because most legal issues involve causality in one form or
another. Such simple rules as "A caused B implies that A
precedes B in time" are very powerful when there is a great
deal of data related to times and events. Time is sometimes
complicated in digital forensic analysis because the time
bases that create time stamps within different systems and
mechanisms may be of different formats, be from different
time zones, have different clock skews from accurate times
as defined by standards bodies, and so forth. In addition,
time sequences within computers may be complicated by
prior state, loads, external and internal states, inputs, and
processing, user intervention, and alteration of traces
between their origin and delivery to the examiner.

When regular expressions can be used to describe times,
extracting times is O(n) in the trace length. Detecting the
presence of out-of-order entries is O(nc) where c is the
complexity of the comparison operation and n is the length
of the trace. The number of possible original orderings is, in
general, the set of all graphs with nodes corresponding to
time stamps. This means that rehabilitating evidence by
identifying mechanisms that cause ordering failure may be
O(n!) where n is the number of times. Mechanisms like file
locks, which force sequential output, may cause processes to
output in a different order than the order of the time stamps
they generate, which forces a looser notion of inconsistency
based on ordering that allows for finite time differences and
results in a POset rather than a strict ordering.

Recent work in the analysis of overlay patterns of disk
writes shows that ordering of file writes can be limited by
examining existing patterns of file storage areas on disk. [5]
More detailed analysis of time sequencing from traces to
validate digital time-stamps has also been done. [6]

B. Sourcing and travel patterns
Sourcing and travel patterns for messages based on

headers have been analyzed and they require O(n2/m) time
and space where n is the number hops all messages
combined took and m is the number of messages [21][7]
Sources, destinations, parsed subsets, or other traces may
also be used in conjunction with timing information to
identify such things as performance effects and other similar
damage-related issues asserted to be self-identifying from the
traces. [21] In this case, the generation of the relevant data is
easy, but finding a process that might determine the effect
requires some sort of averaging or other consolidation of
traces and analysis of a relationship between the events
claimed and the traces.

C. Consistency checks across related records
Consistency checks across related records has been

explored [22][7] and time to compare records once
associated is linear with the number of entries after sorting,
or O(xn log(n)) in total where x is the time to associated
records. When identical indicators are present, X is fixed

time and the sort is the limiting factor. Audit trails
correlation was undertaken in the 1980s [22] with results
indicating that creating false but consistent audit trails from
existing audit trails is quite difficult.

D. Anchor events and external correlation
Anchor events and external correlation allows traces to

be tied across systems and to third parties that the examiner
can testify about. [21] Time consistency between records
then helps to provide internal trace consistency, geographic
location, or time zone. Differentials and jitter in time analysis
has also been considered. [7] The complexity of doing these
sorts of machine-to-machine differentials of records across
machines is O(n) where n is the number of time indicators
used, assuming that the time indicators are reconcilable to a
common format in O(1) time.

E. Differentials and jitter
For time-related analysis, the common format used for

reconciliation of records must also be reconciled with time
zone differences including time zone change times. It is
prudent practice to translate times into UTC to avoid
translation and comparison problems when multiple time
zones are in play. Time zones are not always uniquely
reconcilable, and this leads to exponential growth in the
number of POsets within the delta of the time zones. The
same is true for jitter or system-to-system differences, which
may also change from time to time.

Differential time is useful in reconciling ordering issues.
A standard initial time, such as the zero time of a common
clock (Jan 1, 1401 is commonly used), is used as a zero, all
times are translated into offsets from the zero date at the
maximum clock granularity desired, and times are expressed
in clock ticks from the zero time. Translation into a common
time frame is O(1) for each time indicator. In analysis of
traces, sequences of traces are associated with time offsets
from prior or subsequent trace. This is then revealing with
respect to sequencing and timing, and allows the calculation
of jitter in O(n) time where n is the number of time stamps.

The correlation of these traces other than for strict
ordering is problematic. Gathering statistics on means and
deviations are O(n), but these are not particularly well suited
to the types of errors that occur in digital systems, which
generally fail in step functions rather than having deviations
from a norm based on random stochastic processes. In cases
we have seen, there are many instances of messages delayed
by days purported to be delivered by the same process that,
during the same time frame, delivered seemingly equivalent
messages through the same paths in a matter of seconds. In
one example, a message was delivered a second time after 6
months of delay between its original delivery. This is an
inconsistency with "normal" behavior, but did not, in the
particular instance, indicate anything nefarious. It appeared
to be the result of a restoration from an old backup where
residual data from the mail transfer agent triggered a resend
of and old, already sent message.

IV.BUILDING SIEVES AND COUNTING THINGS

Much of the work of forensic analysis consists of the
examiner building sieves to extract specific traces from
larger traces and counting different things within traces.

A. Derivative traces
In many cases, the form of original evidence is

incompatible with efficient analysis, but translation into a
different format greatly improves efficiency. The date and
time stamp example above is only one example of the
general method of creating derived traces that are back-
referenced to original traces, and performing analysis on
derived traces.

B. Translations
Common translations include, without limit, translations

into other character sets (e.g., EBCDIC to ASCII), multi-line
to single-line translations for continuation lines, removal of
hyphens used at the end of a line to continue a word on the
next line, and combining sequences of separator characters
into a single "TAB" character. All of these are O(n) in the
length of the trace, but all depend on assumptions about the
type and syntax of the trace.

C. Counting things
Many analytical processes in digital forensics involve

counting, and there are many common counting errors.[7]
Counting is generally O(1) complexity up to a maximum
threshold, beyond which the mechanisms for counting fail
and produce either errors or wrong results.

D. Combined mechanisms and error handling
When mechanisms are combined and each can produce

errors, some of which are not automatically detectable (e.g.,
a search specification was imperfect), the combined results
may produce undetected errors. As sieves, counts, and
derived traces are combined into more and more complicated
instruments, these instruments tend to become increasingly
fragile. Error handling is currently of unknown complexity.

V. SUMMARY, CONCLUSIONS, ANDE FURTHER WORK

Clearly the study of the use of redundant traces for
consistency is only in its infancy and the available methods
for analysis and correlation of these redundant traces are
already substantial. At a fundamental level, it seems clear
that redundancy is key to consistency analysis and that
systematic identification and analysis of redundancy may
lead to a more complete theory and practice of consistency
analysis.

This paper only covers the rudimentary forms of analysis
in widespread use today and further work is needed to
characterize other classes of consistency checking in
analysis, including analysis of effects of parallelism,
detection is similarity rather than more precise matches,
addressing issues of mixed symbol sets and other similar
environmental factors, analysis of possible consistencies and
inconsistencies of missing traces and use of this to guide
future events, validation requirements for the methods used.

REFERENCES

[1] The U.S. Federal Rules of Evidence.
[2] Daubert v. Merrell Dow Pharmaceuticals, Inc., 509 U.S. 579, 125 L.

Ed. 2d 469, 113 S. Ct. 2786.
[3] Frye v. United States, 293 F 1013 D.C. Cir, 1923
[4] [4] Reference Manual on Scientific Evidence - Second Edition -

Federal Judicial Center, http://air.fjc.gov/public/fjcweb.nsf/pages/16
[5] Svein Yngvar Willassen, "Timestamp Evidence Correlation",

Presentation at IFIP WG 11.9 International Conference on Digital
Forensics, 2008

[6] Svein Yngvar Willassen, "Hypothesis-based investigation of digital
timestamps", chapter in Advances in Digital Forensics IV, Ray and
Shenoi ed., Springer, ISBN# 978-0-387-84926-3, 2008.

[7] F. Cohen, "Digital Forensic Evidence Examination", ASP Press, 2009,
ISBN#1-878109-44-8.

[8] F. Cohen, "Two models of digital forensic analysis", IEEE/SADFE-
2009, Fourth International IEEE Workshop on Systematic
Approaches to Digital Forensic Engineering, Oakland Conference,
Oakland, CA, USA, May 21, 2009

[9] F. Cohen, "ForensiX", The ForensiX Just Doesn't Look Right (JDLR)
mechanism is detailed in the source distribution available in
http://all.net/ForensiX/Forensix.tar

[10] S. Moody and R. Erbacher, "SADI – Statistical Analysis for Data type
Identification", 3rd International Workshop on Systematic
Approaches to Digital Forensic Engineering, 2008.

[11] P. Weiner, "Linear pattern matching algorithm". 14th Annual IEEE
Symposium on Switching and Automata Theory: 1-11. (1973).

[12] D. Knuth, "The Art of Computer Programming, Volume 3, Searching
and Sorting", 1973, Addison-Wesley.

[13] Crocker, D. and P. Overell, "Augmented BNF for Syntax
Specifications: ABNF", RFC 4234, October 2005. This also
references RFC 733 and 822 as source documents. Available at
http://www.ietf.org/rfc/rfc4234.txt

[14] D. Schoen, "Investigating Machine Identification Code Technology in
Color Laser Printers", 2005, The Electronic Frontier Foundation,
available at: http://www.eff.org/wp/investigating-machine-
identification-code-technology-color-laser-printers

[15] Rudolf L. van Renesse, "Optical Document Security", 3rd edition,
2005, ISBN 1-5805-258-6, Artech House, Boston, London.

[16] F. Meng, X. Kong, and X. You, "A New Feature-based Method for
Source Camera Identification", IFIP WG 11.9, International
Conference on Digital Forensics, 2008 appearing in "Advances in
Digital Forensics IV", I. Ray and S. Shenoi, Ed.

[17] Tom Dean, "Disruptive Perspectives on Biological and Machine
Vision", Keynote Address at HICSS 42, Jan 5-8, 2009.

[18] Hany Farid, "Digital Image Forensics", National Academy of
Sciences, Annual Meeting Symposium, Legal/Forensic Evidence and
Its Scientific Basis, April 25, 2006, p[resentation available at:
http://progressive.playstream.com/nas/progressive/2006am-forensic-
farid/Hany_Farid.html

[19] Dun-Yu Hsiao, Soo-Chang Pei, "Detecting Digital Tampering by
Blur Estimation", Proceedings of the First International Workshop on
Systematic Approaches to Digital Forensic Engineering (SADFE’05),
2005.

[20] I-Chuan Chang Bor-Wen Hsu and Chi Sung Laih, "A DCT
Quantization-Based Image Authentication System for Digital
Forensics", Proceedings of the First International Workshop on
Systematic Approaches to Digital Forensic Engineering (SADFE’05),
2005.

[21] F. Cohen, "Issues and a case study in bulk email forensics", Fifth
annual IFIP WG 11.9 International Conference on Digital Forensics,
2009/01/27, appearing in "Advances in Digital Forensics V" I. Ray
and S. Shenoi, Ed., 2009

[22] F. Cohen, "A Note on Detecting Tampering with Audit Trails'', IFIP-
TC11, "Computers and Security", 1996

	I. Introduction, overview, and background
	II.Feature and characteristic detection, extraction, and analysis
	A.Trace typing
	B.Exact copies, regular expressions, and similar analyses
	C.Equivalent content in different formats
	D.Generating characteristics and features of traces

	III.Consistency analysis of characteristics and features
	A.Ordering assumptions and detecting out of order entries
	B.Sourcing and travel patterns
	C.Consistency checks across related records
	D.Anchor events and external correlation
	E.Differentials and jitter

	IV.Building sieves and counting things
	A.Derivative traces
	B.Translations
	C.Counting things
	D.Combined mechanisms and error handling

	V. Summary, conclusions, ande further work

