

Floppy Forensics

Why you need a Ph.D. from USC 20 years later

Fred Cohen
Fred Cohen & Associates
The University of New Haven

Outline

- **Background**
 - Of your speaker
 - Of the matter at hand
- Arrives a floppy disk
 - What's a floppy worth?
 - How did it get to me?
- First get the data
 - Start with 100 floppy drives
 - Add some old systems
 - Toss in your own Linux CD
 - Out comes the data
- Then explain it...
 - How does a floppy work?
 - OK – how does it break?
- Could I be wrong?
 - What are the chances?
 - What are they really?
- Summary & Conclusions
 - You never know when your Ph.D. in EE will come in handy.
 - Questions & Comments

My (forensics) background

- B.S. EE 1977, C-MU
- M.S. Information Science, 1981, Pitt
- Ph.D. EE 1986, USC
- 150+ professional papers
- Several technical books
- “Challenges to Digital Forensic Evidence”
- California POST certified instructor
- Developed “ForensiX”
- Developed “ForWord”
- Invited speaker at digital forensics conferences
- Developed and teach graduate courses in digital forensics (UNH)
- Guest instructor at FLETC and SEARCH
- Ran a 35+ person research group doing forensics at Sandia

“High Fees – No Guarantees”

- Built forensic tools used for LE
- Built parallel digital forensic analysis platforms
- Consulting in digital forensics for many major corporations
- Developed “White Glove” Linux for digital forensics
- Testified in federal court about digital forensics matters
- Testified to congress about related matters
- Have assisted LE in many digital forensics cases
- And that's not my day job...
- And my sales pitch...

On to the matter at hand

- 2005-06-10
 - Agreed to work on the matter at hand
- 2005-06-21
 - Received one 3.25" floppy disk in FedEx
 - 3M Write-locked double-sided 135 TPI light gray with identifying marks
 - Apparently nobody else could read it
- For one reason or another, this was the one and only piece of original evidence in a case, and the disk was unreadable
- The last time the disk was used (other than to try to extract its contents for this case) was apparently some time in 1989

Outline

- Background
 - Of your speaker
 - Of the matter at hand
- Arrives a floppy disk
 - What's a floppy worth?
 - How did it get to me?
- First get the data
 - Start with 100 floppy drives
 - Add some old systems
 - Toss in your own Linux CD
 - Out comes the data
- Then explain it...
 - How does a floppy work?
 - OK – how does it break?
- Could I be wrong?
 - What are the chances?
 - What are they really?
- Summary & Conclusions
 - You never know when your Ph.D. in EE will come in handy.
 - Questions & Comments

The disk

- How much is a floppy disk worth?
 - \$16M in case 1
 - More cases going
 - This is the one and only disk with the key evidence
 - The key evidence is in a corrupted part of the floppy
 - It came to me because they were desperate
 - High fees, no ...

How did I get it?

- The grape vine...
 - In the field of digital forensics there are essentially no Ph.D. EEs with my kind of background and who don't work for companies that prohibit the work
 - The lawyer asked his best expert who asked around and found me (they were in Florida, I was in CA)
 - They had already tried the “experts” at the commercial companies but the data did not come
 - The lawyer had a call with me, got my background and decided he wanted an expert who could stand up to the serious challenges they might face from major corporations who stood a lot to lose.
 - “We won't give up till you run out of money.”

Floppy recovery approaches

- Physically assemble, read disk (win?) OR
- Read relevant sectors from disk (win?) OR
- Alter drive alignment and read (win?) OR
- Read files repeatedly till success (win?) OR
- **NO STANDARD APPROACH IN HERE**
- Modify drive to change thresholds (win?) OR
- Read analog (storage scope), interpret (win?) OR
- Use real fine colored ferrite, epoxy, microscope
- Use electron microscope with EM attachment
- **Expensive OR Destructive**

Outline

- Background
 - Of your speaker
 - Of the matter at hand
- Arrives a floppy disk
 - What's a floppy worth?
 - How did it get to me?
- First get the data
 - Start with 100 floppy drives
 - Add some old systems
 - Toss in your own Linux CD
 - Out comes the data
- Then explain it...
 - How does a floppy work?
 - OK – how does it break?
- Could I be wrong?
 - What are the chances?
 - What are they really?
- Summary & Conclusions
 - You never know when your Ph.D. in EE will come in handy.
 - Questions & Comments

100 Floppies (300 Trojans?)

- Sometimes, a floppy is written “off-track”
 - You can read it if you realign the floppy drive head to also be off track by the same amount
 - And if you have the right floppy drive with the right head, etc.
 - Where do you get the right floppy drive?
- I go to Alaska
 - Charles Preston
- Charles goes to a swap meet in Anchorage
 - 100 floppy drives for \$100 (no guarantees)
 - We start taking them apart to find ones we can realign
 - We use alignment tools (circa 1990)
 - The spiral disk is the best one for this)
 - Careful with that screw driver...

Some vintage computers

- To run the old floppies and the old software tools
 - You need vintage computers
 - Pack rats to the rescue
 - Computer museums have real value
 - Charles has his own... and so do I...
- I made \$20,000 last year because I had old stuff
- When do you throw things out?
 - The day before someone calls with a lot of money if you have them
 - Which is why we cache our garbage
- But vintage computers don't run the new software tools that help you get at the data!!!

Toss in a White Glove

- So I have my own tool...
 - White Glove Linux has the tools we need and software to let me program it
 - And it runs on lots of old systems with little memory and no disk
 - And it has some of my special tools built up over the years
 - They just have to have a CD so we can boot them up into our Linux
- For forensics it must be...
 - It's forensically sound (changes nothing unless I make it do so)
 - And I can testify to its construction, calibration, and operation as a tool for presentation in court
 - And we can make it do all sorts of special and weird things because that's what we built it for
 - Garrett Gee, the CCDs

The data on silver platter (CD)

- So after a while
 - We found the best floppy drive to read it with
 - We turned off hardware error handling
 - We read the bits that were available
 - But that didn't quite do it
- There is only one disk and it's original evidence
 - Handle it as little as possible!
 - File rereads retry a lot!
- So I tried an old trick
 - Read it a block at a time with unlimited retries (low-level HW reads)
 - Each block goes into its own file, but the ones that fail get reread till they come back with a valid data length and checksum
 - Reassemble the blocks to recreate the floppy (even if you have to give up on some blocks)

Why does this work?

- If a file has N blocks AND
- $P(\text{bad block}) = 25\%$
- THEN $P(\text{read works}) = 0.75^N$
- Reading a 20 block ($\sim 10K$) file
 - For 20 blocks = $0.75^{20} \approx .00317$
 - So it will take about 315 20-block read attempts
 - Or an average of about 3150 1-block reads
- Reading one block at a time
 - Average number of reads = 1.33...
 - For 20 blocks = 1.33×20 or 27 1-block read attempts
- Forensic disk image 720K = 1440 blocks...

Outline

- Background
 - Of your speaker
 - Of the matter at hand
- Arrives a floppy disk
 - What's a floppy worth?
 - How did it get to me?
- First get the data
 - Start with 100 floppy drives
 - Add some old systems
 - Toss in your own Linux CD
 - Out comes the data
- Then explain it...
 - How does a floppy work?
 - OK – how does it break?
- Could I be wrong?
 - What are the chances?
 - What are they really?
- Summary & Conclusions
 - You never know when your Ph.D. in EE will come in handy.
 - Questions & Comments

Explaining it – the hard part

- At the end of the day, I have to be able to demonstrate that this yields
 - Real data – not just fantasy data I created
 - That can be relied upon for legal purposes
 - The reflects that original unaltered contents
 - Even in the presence of hardware errors
- Legal processes are adversarial processes
 - They have experts on the other side
 - They stand to make or lose millions of dollars
 - They will try to invalidate it if they can

How does a floppy work?

- We all know – you stick it in and it reads and writes – but what are the error modes and how does it fail?
- A floppy disk is a ferro-magnetic coated piece of plastic or flexible metal that rotates under a read-write head (electromagnet)
- In “read” the magnetized ferro-magnetic material passes by the wire loop thus inducing current in the wire as the flux density changes
- The induced current (if over threshold) is interpreted by the drive as a “Transition” (T) in Modified Frequency Modulation (MFM) mode

How floppies work

- “Recording Codes for Digital Magnetic Storage”
 - Paul H. Suegel – IEEE Trans Magnetics Mag- 21#5
 - September, 1985
- MFM encoding:
 - Designed to make the FSM simple

State	A	B	Code	Data
0	10/A	00/A	N0	0
1	01/B	01/B	N1	1

Fig. 8. Encoder and decoder tables for MFM

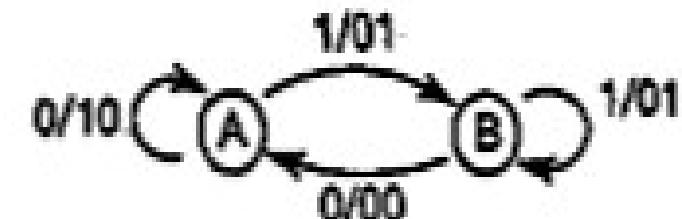
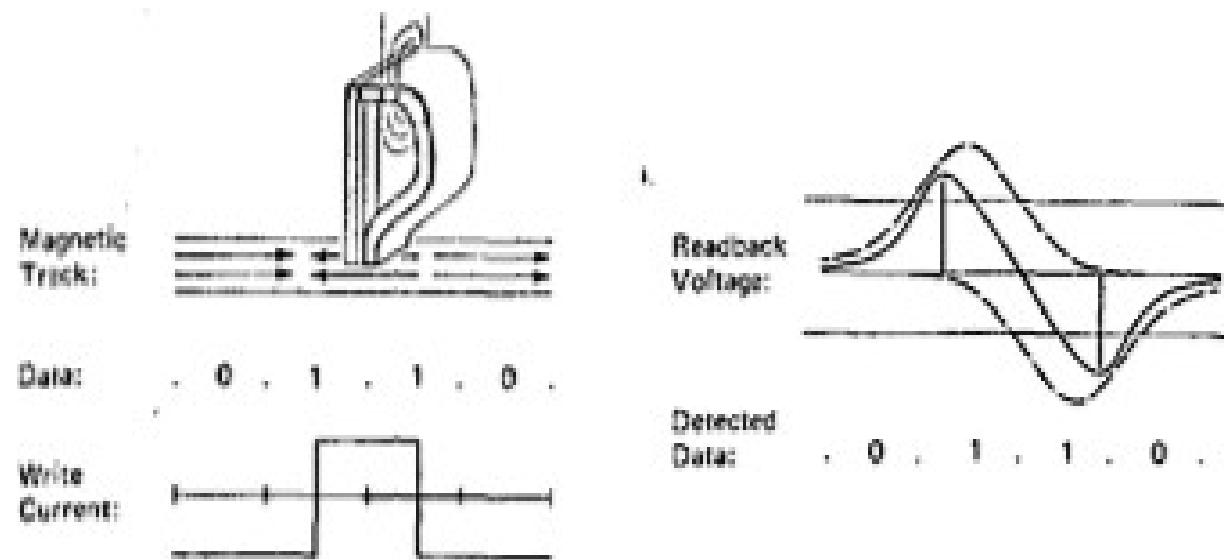
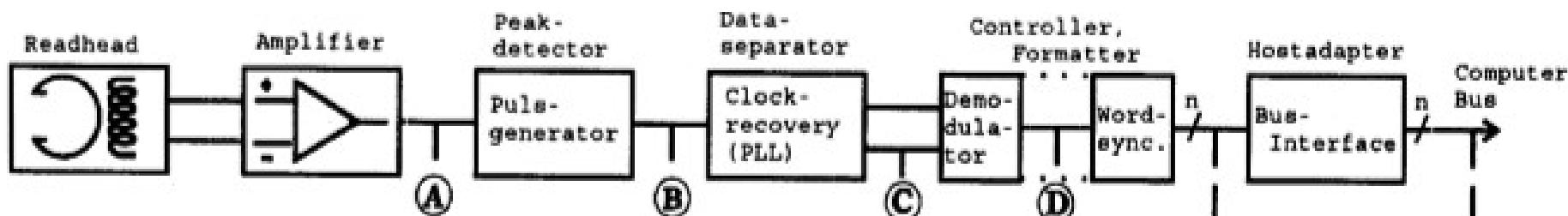
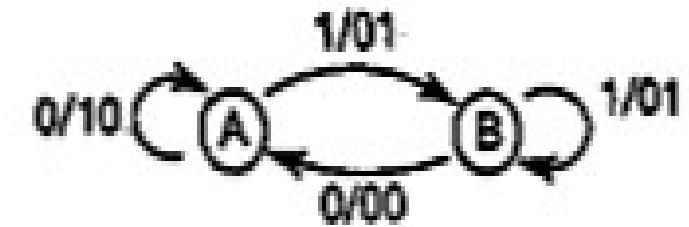




Fig. 1. Digital magnetic recording channel

Floppy electronics

- “Computer Evidence”
 - Analysis and Recovery of Magnetic Storage Media”
 - Hans-Joachim Leimkuller
 - 0-7803-2627-X/95 IEEE 1995


--- ST 506, Floppydrive ---

--- ESDI, SMD ---

--- SCSI, Floppycontroller ---

--- IDE, EIDE ---

- Current direction is ignored by the drive
 - Changes in flux density produce transitions (T)
 - Non-changes produce no transition (N)
 - Direction of transition is ignored
 - What about A:0/11, A:0/00, B:1/00 and B:1/11?
 - Oops... Nobody noticed this...
 - Typically produce read errors?
- Houston – we have a problem
 - When the flux density is reduced:
 - we don't always get Ts
 - we can get T-N (T becomes an N)
 - we cannot get N-T (N becomes a T)

Floppy physicality

- 720K floppy
 - 3.5" outer diameter – 1" inner diameter
 - $3.14 * (1.75^2) = 9.6$ sq-in – $3.14 * (0.5^2) = 0.78$
 - OR about 9 sq in / 720Kbytes = 7.2M bits (CRC, etc.)
 - $25.4\text{mm} \times 25.4\text{mm} * 1.25 * 10^{-6} = 8 * 10^{-4}$ sq mm/bit
 - Bits are not packed at maximum density - they are in tracks that take about ½ or less of the actual space
 - Transitions are across that space and are at somewhat smaller sizes within those areas
 - Density is different for inner tracks and outer tracks

Floppy drive physicality

- The drives have different properties
 - Different heads, motors, tolerances, thresholds
 - Different electronics (no circuit diagrams available)
 - Different calibrations and tolerances and errors
- This leads to failure modes at the edges
 - Of tracks (two drives offset can be incompatible)
 - Of flux densities (weaker field strength drive writes)
 - Of speeds (faster is not always better)
- And is used by defenders and attackers
 - Weak bit writes for copy protection
 - Weird formats and offset heads for criminals

MFM floppy failure modes

- You can get:
 - False transitions
 - From excessive charge on media induced by what?
 - External EMF – but it tends to be over large areas
 - field strength at distances tends not to be from near point sources
 - Inside the cover, the distance is set at several mm or more
 - How do you get a point change in at the size of 10^{-4} sq mm?
 - Not caused by media failures because it has to slew from max to min or min to max – zero to either does not transition
 - Missed transitions
 - Scratches, heat, bending, chemicals, biologicals, wear
 - PLL timing loss
 - Enough lost transitions

How can T-N impact 1,0?

- “Weak” bits:
 - Reduced field strength causes loss of transitions
 - Typically caused by wear, time, temperature changes
 - Lost transitions lead to PLL failure and bad timing
 - Produces hardware level failure signals and incomplete blocks read into memory (partial blocks)
 - Lost transitions lead to what else? (Nobody knew)
 - $NT = 1$ $T-N > NN: 1-NN = 0, 0-NN = HW\ Error$
 - $0-TN = 0$ $T-N > NN: 0-NN = HW\ Error$
 - $1-NN = 0$ No T, No T-N ($NTNN > NNNN$)
 - Weak bits lead to HW Error – OR – 1-0
 - They can never produce 1s!

The full table

- All of the data outputs that can result from T loss
 - Single T losses in table 111-101 and 11 into 10
 - I will write this as 11-[10/01] for now
 - Red circles impossible 0-1 for previous bits AND no change!
 - All multiple T losses lead to NNNN: invalid

<i>Data</i>	<i>Originally</i>	<i>Can turn into</i>	<i>Result</i>
[11]	NTNT	NNNT	1[01]
	NTNT	NTNN	[10]
	NTNT	NNNN	invalid
0[00]	TNTN	NNTN	1[00]
	TNTN	TNNN	invalid
	TNTN	NNNN	invalid
1[00]	NNTN	NNNN	invalid
[10]	NTNN	NNNN	invalid
0[01]	TNNT	NNNT	1[01]
	TNNT	TNNN	invalid
1[01]	NNNT	NNNN	invalid

Did I mention CRC codes?

- Floppies have 16 bit CRC codes for each 512 byte block
 - CRC codes do not cover all errors
 - 100% detection of single bit errors
 - 100% detection of all adjacent double bit errors
 - 100% detection of error windows spanning up to 16 bits
 - 100% detection of 2-bit errors not separated by $2^{16}-1$
 - For arbitrary multiple errors spanning more than 16 bits
 - At worst 1 in 2^{16} failures (99.995% detection rate)
- Which means it takes more than one bit flip to cause a valid read with wrong data
- And many if adjacent bits flip

Outline

- Background
 - Of your speaker
 - Of the matter at hand
- Arrives a floppy disk
 - What's a floppy worth?
 - How did it get to me?
- First get the data
 - Start with 100 floppy drives
 - Add some old systems
 - Toss in your own Linux CD
 - Out comes the data
- Then explain it...
 - How does a floppy work?
 - OK – how does it break?
- Could I be wrong?
 - What are the chances?
 - What are they really?
- Summary & Conclusions
 - You never know when your Ph.D. in EE will come in handy.
 - Questions & Comments

So what does this mean?

- If weak fields are the cause of the failures
 - They can only produce T-N and 11-[10/01] or HW faults
 - If no HW faults, no 1s added to the final result
 - $P(T-N \rightarrow \text{valid code}) = 2/22 = 1/11$
 - $P(\text{incorrect read with valid CRC}) \approx 1 \text{ in } 2^{16} = 1/65536$
 - IF MFM and CRC are not correlated, $1/720896$ reads
- Unless we do tens of thousands of rereads the odds are very good that the data is valid – right?
 - But no 0-1 transitions are possible
 - How does a CRC work for only 11-[10/01] transitions?
 - $P(1) \neq P(0)$ in typical data - $\sim 75\%$ of contents are 0s
 - $512 \text{ bytes} * 8 \text{ bits} / 4 = 1024 \text{ 1s per block}$ – effects on CRC?

And what is the cause exactly?

- Remember – we are re-reading blocks that fail
 - Are some T-N errors at or below detection threshold?
 - If they are near the threshold
 - There is a probability they will show up on a given read
 - There is a probability the reads will work with multiple T-Ns
 - Are the errors caused by alignment differences?
 - The seeks sometimes go a bit off track and get correct data
 - Some failed reads may pick up different lengths before failures
 - Are the errors caused by timing faults?
 - If so, rereads will pick up different lengths before failures
 - This implies missing substantial numbers of Ts
- Which one is it?

Which one?

- Head alignment problems
 - Should be detected by realignment performance changes
 - The one and only piece of original evidence wears further every time you use it
 - So we were unwilling to test it a lot of times
 - Head realignment did not yield substantial improvements on the whole disk
 - We didn't test sector after sector (destroying the disk)
 - Other evidence: success or failure rates right after seeks
- Timing problems cause HW failures and partial reads
 - So do head alignment faults
 - We detected many partial reads (<512 bytes)

Which one?

- Typical rereads observed were:
 - 3 retries per seek (HW)
 - Groupings of retries from 1 to 80 seeks (=240 retries)
 - ~200 blocks require 40 retries average = 8000 retries
 - Often good read on first read after seek for low retries
 - Correlation between harder to read tracks and locations on disk drive (one sector after another with high counts)
- From this I conclude:
 - Some worn or failing areas (tracks) of the disk
 - Some weak flux areas near threshold (small reread #s)
 - No 1's are “created” by recovery (all T-N > 11-[10/01])
 - Some blocks may have 11-[10/01] residuals $P(x)$ small

Did I mention the \$s?

- There is a lot of money involved in this case
 - People will lie and cheat for a lot of money
 - How do we show that the “original” is real?
- Defeating the forgery claim
 - Assertions with no facts about the possibility that the floppy was a forgery
 - As a preemptive strike:
 - Make a preliminary determination
 - Identify how it could be made more solid
 - How can a floppy fail and how can this lead to dating of the data?

Floppy failure modes revisited

- Can the physical failure mode lead to dating?
 - Scratches – oxides form over time as F(environment)
 - Can tell me minimum time since the scratch (none detected)
 - Loss of field strength by random reorientation
 - Very likely not a very recent write (several years likely)
 - Bending – mechanical breakdown of location
 - Unless it leaves a scratch... (no bends or other residuals found)
 - Chemicals – effects instantaneous but residuals can last
 - Some decays with time (no evidence found)
 - Biologicals – growth over time leads to aging
 - While at USC summer internship – visited Ft. Wachuka
 - Biologicals grow/decay with time and environment (none found)
 - Wear – happens at the time of use (no evidence found)

More physical evidence

- Without destructive testing little more can be done
- If degradation effects desired content
 - Content was written before degradation
 - Otherwise errors in writing would have prevented writing it during read-back
 - Sets limit on latest time of write
 - Depending on results and specifics of the situation
 - Examination and analysis may lead to bounds on age of bits
 - Unlikely something the forger would do
 - It degrades the very part of the content they are trying to get into evidence
 - Degradation found was inconsistent with typical available intentional “weak bit” writing

More physical stuff

- Flux levels of drives
 - Technical changes in that time frame increased depth of electromagnetic penetration (we didn't do analog work)
- Tightness of write areas
 - Different penetration and patterns from different drives at different times (alignment indicated older technology)
- Speed of writing
 - Faster drives came later and you can tell by shapes of the electromagnetic patterns (no read failures on slow drives)
- Serial and batch numbers on disks
 - Manufacturing runs and other printed stamps (some OK)
- Material composition of disk (didn't look)

How is software built?

- Compiler and versions
 - Some didn't exist at that time (checked all versions)
- Copyrights and internal version numbers
 - Actual dates may show earliest possible dates
 - Version numbers internally may yield results
- How code is assembled
 - Methods change with time, new algorithms pop up...
- Libraries used and bug fixes
 - Patches and patch levels indicate dates (binary exam)
- Instruction sets provided in code
 - Different instructions are added over time for new CPUs

More on software

- File dates and layouts
 - File system as you see it
 - OLE files and internal object dates (ForWord)
 - Methods for generating dates and times (lots of details)
 - Other software from the period with its errors
- Residual data in deleted and overwritten areas
 - If the disk was used at a later time, even if overwritten, deleted data areas may reveal prior content (hex edit)
 - The prior content has the same potential for showing newer dates and indicators.
- We checked many of these things and found no obvious indications of forgery

An interesting project to do

- Faults are 11-[10/01] faults and languages are known
 - We should be able to systematically reconstruct valid values reflective of actual originals
 - Examine all 11-[10/01] changes in each reread block
 - Identify those that form valid parts of the code space
 - 'This' = $124_8 150_8 151_8 163_8$ (note initial '0' bit stops intraword effects)
 - $124_8 = 01_2 010_2 100_2$ No valid weak bit errors
 - $150_8 = 01_2 101_2 000_2 \rightarrow 00_2 101_2 000_2 = 50_8 = '('$ = T(is
 - $163_8 = 01_2 110_2 011_2 \rightarrow 01_2 010_2 011_2 = 123_8 = 'S'$ = ThiS
 - $163_8 = 01_2 110_2 011_2 \rightarrow 01_2 100_2 011_2 = 143_8 = 'c'$ = Thic
 - $163_8 = 01_2 110_2 011_2 \rightarrow 01_2 110_2 010_2 = 162_8 = 'r'$ = Thir
 - and $01_2 100_2 010_2$ and $01_2 010_2 010_2 = 142_8$ and $122_8 = 'b'$ and 'R' Thib/ThiR
 - Start with valid outputs, test faults, do linguistic analysis
 - Some things like this appeared to exist on recovery

An alternative validation

- Why not just reread the floppy and compare?
 - In the actual case we were limited by time and did not want to destroy the original data by many rereads
- Did I mention White Glove and firewalls?
 - Luck favors the prepared
 - WG firewall floppy disks fail – so I have golden copies
 - I can do repetitions of recoveries on them to validate
 - Every few years (last week...) - low retries = golden
- Legal cases are hurry up and wait affairs
 - The total time available was about a week
 - 10 FTE days total for this effort

How to forge and win

- To get past this examination you would need:
 - Vintage hardware in good operating condition
 - Vintage software and tools and knowledge of how to use them
 - Vintage media that had not been used since then
 - Creation of all necessary content including deletions, old versions, and overwritten areas, including areas at the ends of blocks and deleted directory areas
 - The proper set of errors in the content under inspection
 - You would have to have multiples of these to create some of the different seek behaviors generating the error modes detected
 - After creation, you would have to have subjected it to degradation that typically occurs over many uses and several years
- We concluded this was most likely authentic and unaltered from the represented time frame

Outline

- Background
 - Of your speaker
 - Of the matter at hand
- Arrives a floppy disk
 - What's a floppy worth?
 - How did it get to me?
- First get the data
 - Start with 100 floppy drives
 - Add some old systems
 - Toss in your own Linux CD
 - Out comes the data
- Then explain it...
 - How does a floppy work?
 - OK – how does it break?
- Could I be wrong?
 - What are the chances?
 - What are they really?
- Summary & Conclusions
 - You never know when your Ph.D. in EE will come in handy.
 - Questions & Comments

Forensics is a team sport

- It takes a village (or something like that)
 - Nobody can know enough to do all of this stuff – serious digital forensics on tough cases needs a team approach
 - Nobody has all of the things you need
 - You need collaboration between laboratories
 - Find what you need through a networked approach
 - Kevin Manson and TUS and Cybercops and more
 - Online groups are creating communities of experts necessary to solve complex crimes and address complex issues
 - There are very few Ph.D. level people in the field
 - Only a few cases require them – for now...
 - This is changing as the courts realize it's not a slam dunk
 - Internal adversarial views (a good partner helps a lot)
 - Without Charles/Chet it fails

Forensics is a skills game

- You need to be able to read and understand a broad range of technical material
 - Electromagnetics, some physics, math skills
 - Electronics, electromechanics, chem/bio/misc facts
 - Coding, I/O systems, OS mechanisms, libraries, SW, data and representations, languages, complexity
- You need to generate new results on the fly
 - Nobody checked the error modes of MFM codings
 - Nobody else did systematic rereads this way
 - Nobody figured out if/how these rereads worked
 - Nobody (Still) has analyzed CRC under MFM faults
- We think it's normal – but we are EEs...

Forensics is experimental

- You need to do experiments on many things
 - But not on the original evidence!
 - Test on a dummy first
 - Every time we touched the evidence disk we did exactly the same thing to a test disk along with verifying non-faults first
 - Test error modes (verify write-protection with the identical HW and SW on the dummy first) to protect original evidence
 - You need repeatable results – but don't repeat them
 - The evidence wears out, so you can't just keep trying it
 - Repetitions on dummy versions first
- Original evidence has to be treated very carefully
 - Chain of custody, non-alterations, document use, don't risk unless/until you have to, need to get court permission for each activity

Why does it take Ph.D. EEs?

- Because there are very few people with
 - The proper range of skills and knowledge
 - Who can combine science, physics, and mathematics
 - To address complex previously unsolved computer-related problems
 - With on-demand experimental validation
 - And can credibly testify in court with serious opposition
- I have used parts of every course I took while at USC in digital forensic cases – it takes a Ph.D. EE
- But I don't get the day-to-day cases
 - High fees – no guarantees
 - I won't stop trying till you run out of money...

Thank You

Questions?
Discussion?!

Dr.Cohen at Mac.Com
<http://all.net/>