

Digital Forensic Evidence Examination The State of the Science and Where to Go From Here NEFX - Sep 13, 2010

Dr. Fred Cohen
President - California Sciences Institute
CEO – Fred Cohen & Associates

The Control of the Co

- Introduction
- Epistemology?
- Theory?
- Methodology?
- Experimental basis?
- Physics?
- Where do we agree?

California Sciences Institute Your speaker

- Education:
 - B.S. Electrical Engineering (C-MU '77)
 - M.S. Information Science (Pitt '81)
 - Ph.D. Electrical Engineering (USC '86)
- Experience:
 - >30 years of information protection R&D, design, engineering, testing, implementation, and operation
 - >20 years since first digital forensics case
- CEO Fred Cohen & Associates
 - Enterprise information protection architecture
 - Digital forensics for high-valued legal cases

CalSci

- President California Sciences Institute
 - Started doctoral classes in 2010-07
- M.S. And Ph.D. Program in National Security
 - Technical aspects of these fields
- M.S. In Advanced Investigation
- Ph.D. In Digital Forensics
 - The first Ph.D. program in Digital Forensics in the United States
- calsci.org

California Sciences Institute The challenge

- Digital Forensic Evidence (DFE) Examination
 - Building a consensus in the scientific community
 - A common body of knowledge
 - Well defined and consistently used terms
 - A well understood epistemology, theory, and methodology
 - A strong experimental basis
 - An agreed upon physics
 - This review
 - Identifies select elements that I think should meet that set of requirements
 - Asks for your views consensus or not?

California Sciences Institute

Observation: the picture today

- Introduction
- Epistemology?
- Theory?
- Methodology?
- Experimental basis?
- Physics?
- Where do we agree?

California Sciences Institute Epistemology

- The branch of philosophy that studies the nature of knowledge, its presuppositions and foundations, and its extent and validity.
- In the case of the science of digital forensic evidence examination:
 - Digital evidence is entirely sequences of bits.
 - Physics different than matter and energy.
 - Finite (fairly small) granularity in space and time.
 - Observation without alteration.
 - Duplication without removal.

California Sciences Institute Epistemology 2

- DFE is trace, but not transfer.
 - Traces produced by the execution of FSMs.
- FSMs have properties that define a physics.
 - Finite granularity implies limits on accuracy and precision based on representation.
 - FSMs are syntactic in nature so semantics is driven entirely by context.
- DFE is normally latent in nature.
 - Can only be observed through use of tools.

California Sciences Institute Epistemology 3

- There are fundamental limits on what can be done.
 - Computational complexity is like the speed of light in DFE examination.
 - DFE can never directly speak to the physical world except in limiting what FSMs can do.
 - At the edge between digital and physical systems there are assumptions.

- Introduction
- Epistemology?
- Theory?
- Methodology?
- Experimental basis?
- Physics?
- Where do we agree?

Theory

- Scientific theories are not casual theories.
 - They are constructs that are testable by nature.
 - Refutation can destroy a theory, but confirmation cannot prove it except in finite cases.
 - Scientific theories change slowly, and normally, once accepted, only change because of dramatic changes in underlying understanding of physics
 - Those changes are normally only related to special or rarely seen cases.
 - Theories are different than hypotheses, which come up all the time, on a case-by-case basis.

California Sciences Institute DFE theories

- Theories in DFE examination.
 - Form a physics of information.
 - Many of them are based on mathematical results that have long been widely accepted.
 - Some of them are still conjectures, that may be proved or disproved with time.
- Most such theories stem from computer engineering, computer science, finite mathematics, and related fields.
- Many such theories lead substantially limit what can be truly stated about DFE.

C

- Introduction
- Epistemology?
- Theory?
- Methodology?
- Experimental basis?
- Physics?
- Where do we agree?

California Sciences Institute

A standard model

- We generally interpret theory in terms of a model -- I will call it "the standard model"
 - But it's hardly standard at this point in time
- The standard model assumes laws, a judicial system with various standards
 - These are called "the legal environment" (L,R,V)
- Claims made by parties, documents, statements, and a wide variety of other non-digital information, and hypotheses are made by examiners
 - These are called "events" (E)

- There is a wide variety of digital forensic evidence, typically in the form of sequences of bits
 - These are called "traces" (T)
- The DFE examiner identifies consistencies and inconsistencies
 - Between and within traces (TxT)
 - Between traces and events (TxE)
- To do this, the examiner uses forensic methods
 - These are called "procedures" (P)

California Sciences Institute The standard model 3

- Examiners work within constraints
 - There are limits on available resources (R)
 - There is an ever changing schedule (S)
- There are various implications of this model
 - The sizes of the model components
 - Available computing power and its implication on thoroughness
 - Limitations due to resources and schedule
 - Limits of currently available procedures
 - Legal limitations on what can be used, how, when, and probative versus prejudicial value

California Sciences Institute

Scientific methodology in DFE

- The fundamental theorem of DFE examination:
 - What is inconsistent is not true
- DFE examination consists of testing hypotheses to try to refute them.
 - No matter how many tests are performed, except for special cases, <u>you can't prove that</u> <u>anything is true</u>.
 - The <u>best</u> you can do, is show that your <u>tests</u> failed to refute the <u>hypotheses</u> at issue.
 - The <u>most</u> you can say (in proof) is that the <u>results</u> of the tests you did were <u>consistent</u> with some set of <u>hypotheses</u>.

California Sciences Institute Refutation is king

- On the other hand...
 - One refutation disproves a hypothesis.
 - The *least* you can say based on refutation is that the *hypothesis is not true*.
- Thus the methodology consists of:
 - Devise testable hypotheses (A <u>consistent</u> with B)
 - Test those hypotheses against the evidence
 - A scientific test should seek to refute a hypothesis and not to confirm it (seek <u>inconsistency</u>)
 - Inductive and deductive logic are valuable tools for testing hypotheses
 - As is experimental technique

The Control of the Co

- Introduction
- Epistemology?
- Theory?
- Methodology?
- Experimental basis?
- Physics?
- Where do we agree?

California Sciences Institute The experimental basis is limited

- As an area of science, DFE has a relatively small number of peer reviewed and repeated scientific experiments.
 - The total corpus is <500 serious papers.
 - Most of these have very limited applicability.
 - Most not focused on fundamental understanding.
 - Most experiments don't meet the standards of scientific rigor typical of other fields.
 - Most experiments are oriented toward confirmation rather than refutation, which makes them scientifically dubious at best.

California Sciences Institute Experiments and tools

- DFE is latent, therefore
 - Experiments require tools
- Experiments are limited by the tools, therefore
 - We need to understand the limits of the tools to understand the limits of the experiments.
- We need a methodology to evaluate tools
 - Without a methodology, regardless of what the tools tell us, we don't know how to interpret it.
- What's involved in this methodology?

California Sciences Institute Tools must be...

- We must understand the nature of errors made by tools.
 - To do this, we need an error model.
- We must understand how to calibrate tools, how to test tools, and create a systematic approach to doing so.
 - The calibration process typically involves validation with known samples.
 - The testing process typically involves verification of the software, which normally involves mathematical proofs combined with tests that exploit the error

California Sciences Institute

Tool interpretation

- Regardless of how "good" the tool is:
 - It must be properly used
 - The results must be meaningfully interpreted
 - The limits of the tools must be understood
- This implies expertise by the examiner:
 - Knowledge
 - Skills
 - Experience
 - Training
 - Education

- Note the need for a theory of measurement and its application in the context of tool usage...
- What does the ruler measure?
- Do I need the same ruler to test it?
- Can I use the same ruler to test it?
- Can I use a tool that doesn't reveal the mechanisms producing its outputs?

- Introduction
- Epistemology?
- Theory?
- Methodology?
- Experimental basis?
- Physics?
- Where do we agree?

- Digital space converges with time
 - FSM: (I,O,S,m:{IxS}→{O,S'}) IF |I|>(|O|+|S|) THEN \exists (i,i')∈I: \exists (o)∈O, \exists (s)∈S, i \rightarrow (o,s) and i' \rightarrow (o,s)
 - Also note that $h(O) \le h(I+S)$ (Shannon's h)
 - Energy and matter space diverges with time (2nd law of thermodynamics)
 - Digital space converges with time
- You can't normally identify Iⁿ from traces T
 - T: $|T|<|I^n|$, $\exists (i,i')∈I^n:\exists (t)∈T$, $i\rightarrow (t)$ and $i'\rightarrow (t)$
 - In digital space, history is not uniquely determined by the present

- Time is a partial ordering
 - FSM outputs are strictly sequential as sets but...
 - Traces as recorded are subject to Δt
 - When multiple FSMs are present, A≈B may apply
 - Trace time stamps subject to delays, etc.
- Time directional asymmetry
 - Given {IxS}, {O,S'} are unique and known
 - But... given {O,S'}, {IxS} are (usually) non-unique
- Given T, you cannot uniquely derive the FSM
 - \forall n, Mⁿ:(Iⁿ,Oⁿ,Sⁿ,mⁿ:{IⁿxSⁿ}→{Oⁿ,Sⁿ'}), \exists infinite k: M^kšMⁿ (by construction, add redundant states).

- Thorough examination, in a sense of looking at all possibilities, is almost never feasible
 - 100 instruct. (i) @ $10^9 \text{ i/s} \rightarrow 10^{10^{18}} \text{ 1s i-sequences}$
- Time and space are discontinuous
 - Finite granularity space (bits) and time (clocks)
- I/O not repeatable across the D-A-D interface
 - Experiment: Print a JPG, scan it back, compare
 - Experiment: Scan the same page multiple times
- Precision is always necessarily finite
 - (/ 1 3) is precise, but try for Pi

- Hash functions and their limitations (lossy)
 - $-|I|=2^n$, $|O|=2^m$, $n>m\rightarrow \exists i,i'\in I$, $o\in O$ $i\rightarrow o$, $i'\rightarrow o$
 - and \exists o∈O, \exists Ï⊂I, |Ï $| \ge 2^{n-m}$
- Regular physics still applies in most cases...
 - A signal traveling from San Diego to San Francisco cannot get there in less than so many milliseconds
- Computational complexity ≈ c in computers
 - After it got there, it has to perform a computation, and that also takes time!

The Control of the Co

- Introduction
- Epistemology?
- Theory?
- Methodology?
- Experimental basis?
- Physics?
- Where do we agree?

California Sciences Institute Thank You

http://calsci.org/ - calsci at calsci.org http://all.net/ - fc at all.net