

The need for science and engineering disciplines to move the information protection field forward CMU-CyLab - 2013-02-11

Dr. Fred Cohen
CEO – Management Analytics
CEO – Fred Cohen & Associates

Outline

- My background
- Measurement and Science
- The human reality of science and protection
- The physics of digital information
- The future

Abstract:

Science and engineering develop with the introduction of systematic approaches to understanding reality.

Information protection, a mix of the easy things (called the hard sciences), and the hard things (called the soft sciences).

Ultimately an information physics is needed

Historical lines fused across disciplines Fred Cohen & Associates

Your speaker

- CEO Management Analytics / Fred Cohen & Associates
 - Protection architecture / Counsel to executives
 - Tool development / Patents / Basic research (R1)
 - Digital forensics for (usually high-valued) legal cases
 - Government sponsored research and development (R2-3)
- B.S. EE (C-MU '77), M.S. Info Sci (Pitt '81), Ph.D. EE (USC '86)
- >30 years of information protection R&D, design, engineering, testing, implementation, operation, etc.
- >20 years since first digital forensics case
- POST certified DF instructor, Guest lecturer FLETC, PMTS Sandia National Labs, ICS² fellow, honorary Ph.D. in C.S., etc.
- >>100 peer reviewed publications, many conference talks, ...
 Summary: He's old... and getting older...

Fred Cohen & Associates

Outline

- My background
- Measurement and science
- The human reality of science and protection
- The physics of digital information
- The future

When I was young...

- 1973 CMU undergrad soon to be E.E.
- Dr. B. R. Teare University professor
- Intro to EE The first thing we were taught
 - How a meter works
 - Panther Hollow and frogs
 - Magnets, windings, and deflection of an armature
 - Impedance, Calibration, Precision, Accuracy
 - Everything starts with measurement
- How do we measure which digital things?
 - Calibration? Precision? Accuracy?
- How do we measure protection?

The basics

- Science is about causality
 - A scientific theory:
 - C →^M E: Cause(C) produces Effect (E) via mechanism M
- The scientific method
 - Identifies the criteria for rejecting (or accepting, for now) a scientific theory about a general principal
 - Hypothesize C →^M E
 - Perform experiments (e.g., C→^M~E) to refute
 - Failure to refute → confirmation
 - Enough confirmations and hypothesis becomes theory
 - One refutation and theory becomes refuted (wrong)
 - But it may still be useful for limited cases

Fred Cohen & Associates

Experiments and measurement

- We can't experiment without measurement
 - We must be able to measure E as a precursor to doing any experiment for causality
 - Unique measurement for each experiment is problematic
 - It lacks the scientific notion of a theory
 - It cannot be tested and is not repeatable
 - For science to advance, we must
 - Agree on the system of measurement
 - Be able to apply it to repeat experiments
 - Predict defined outcomes before testing
 - Be able to use it to confirm or refute hypotheses
 - Definitively compare measured to hypothetical results

Metrics and measurement

- Different commonly recognized metrics classes
 - Nominal (Boy or Girl?)
 - Categories as non-overlapping sets
 - Supports set membership (=,≠)
 - Ordinal ([Major, Colonel, ...] [hate, like, love])
 - Ordered (ranked/partial) not equidistant
 - Supports non-arithmetic comparison (<,>,≤,≥,=,≠)
 - Interval ([1-5, 6-9, 10-30, 31 and up])
 - Ordered in equidistant scales in ranges
 - Supports limited arithmetic $(+, -, <, >, \le, \ge, =, \ne)$
 - Ratio ([12/15], [298 degrees Kelvin])
 - Ordered, equal distance, true zero
 - Supports full arithmetic (+, -, *, /, <, >, ≤, ≥, =, ≠)

Metrics and measurement

- A useful scientific scale must
 - Be well defined and agreed upon
 - Be repeatably usable for multiple purposes
 - Be experimenter independent
 - Differentiate between predicted outcomes
 - Be used to confirm/refute hypotheses w/in limits
- Example predictions:
 - Good for scientific use: Fewer children will be in the classroom after school than during school
 - Bad for scientific use: You will meet someone wonderful who likes you

Example science

- Hypothesis: The World is flat
- Experiment: Keep sailing west
 - See if you come back from the east (nominal)
 - Lots of them didn't come back... confirmed
 - So many didn't come back → scientific theory
 - One made it around...
- Refutation the theory was refuted (wrong)
 - But it may still be useful for limited cases
 - Do you account for the curvature of the Earth when you design a house?
 - Or do you assume the Earth is flat?

Fred Cohen & Associates

Some simple protection questions

- What is the definition of risk? (metric type?)
 - What are its units?
 - What is the standard of measurement?
 - Is it an absolute quantity?
- What can we do about it? (nominal)
 - Transfer: Is there any benefit to the shell game?
 - Reduction: By how much and with what method?
 - Avoidance: What are the units of reward?
 - Acceptance: Only if we know what it is...
 - ARE THOSE THE ONLY THINGS TO DO?

Outline

- My background
- Measurement and science
- The human reality of science and protection
- The physics of digital information
- The future

A problem with science

- Scientists are people too
 - People make mistakes → Science makes mistakes
 - Science corrects big mistakes and does it slowly
 - When someone notices "something wrong"
 - When the wrong thing is important enough to someone
 - Scientists will check it out, refute the old, propose new
 - Old workable science is still useful (F=ma)
 - People lie → science examines refutation carefully
 - Confirmation not so much because it's not surprising
 - A new result that's important enough will be checked
 - Once you lie in science nobody will likely believe you again - and your old work will be largely discounted

Important enough?

- We have created a highly dependent society
 - Advanced society may literally collapse without properly functioning information technology
- I care but if you don't...
 - Without a reliable C →^m E model
 - We make a lot of mistakes (which happens anyway)
 - Those mistakes don't get corrected
 - They may be replaced by other mistakes
 - We pay too much and get too little
 - Snake oil sales prosper in the marketplace
 - We still do ridiculous things we did 25 years ago
 - Change your password how often?

Did I mention what I do?

- Information protection involves people
 - Some people are malicious, intelligent, selfconfident, highly adaptive, well educated, highly skilled and funded, physically fit, attractive, etc. And some teams of people combine these things together effectively
 - Other people are naïve, honest, gullible, lonely, tired, insecure, hurting, etc. And some of those people are highly trusted.
- What do you think happens when we pit some people against other people?
 - Can we predict the future? (science or magic?)

Human behavior

- Personality testing The Big 5 (Likert scale)
 - Openness to experience {inventive, curious} x {consistent,
 cautious}: Fantasy, Aesthetics, Feelings, Actions, Ideas, Values
 - Neuroticism {sensitive, nervous} x {secure, confident}: Anxiety, Hostility, Depression, Self-Consciousness, Impulsiveness, Vulnerability to Stress
 - Extraversion {outgoing, energetic} x {solitary, reserved}:
 Warmth, Gregariousness, Assertiveness, Activity, Excitement Seeking, Positive Emotion
 - Agreeableness {friendly, compassionate} x {cold, unkind}: Trust,
 Straightforwardness, Altruism, Compliance, Modesty,
 Tendermindedness
 - Conscientiousness: {efficient, organized} x {easy-going, careless} Competence, Order, Dutifulness, Achievement Striving, Self-Discipline, Deliberation

Fred Cohen & Associates

Personality links to behavior

- Theory associates "personality" with behavior
 - People who commit certain types of crimes tend to have higher/lower ratings (percentile scores on big 5) in combinations of areas than others
 - But just because someone tests as being inventive/curious, easy-going/careless, outgoing/energetic, friendly/compassionate, and secure/confident doesn't mean they are a fraudster or they may be
- Correlation is not causality
 - But how would we even measure correlation?
 - The Big 5 test is extensive and time consuming and cannot be forced on people often – or even once...

Measuring personality

- Personal communications produce text
 - A hypothesis that word usage correlates to personality traits has been proposed
 - Testing shows correlation with the big 5
- But how might we use this?
 - Word usage correlates with personalities that correlate with undesired activities, so use the word usage as an indicator
- Mighty thin...
 - But there's more... aggravating factors (e.g., stressors), deceptive terms and phrases, ...

What really happens?

- We don't know how to predict the future
 - At least not very well... until we do scientific experiments... and even then...
- The social sciences
 - The hard sciences are the easy sciences
 - The soft sciences are the hard sciences
- How do we measure people?
 - There is a theory of measurement for the social sciences
 - Good, bad, or otherwise, it provides a basis for comparison

When I was not so young...

- 1983 Deception in attack: computer viruses
 - Computer viruses don't have to be deceptive...
 - Most are: Trojan horses with reproduction and harm
 - Like other life forms, survival involves deception
- 1992 Deception for defense
 - "An Evening with Berferd"
 - "OS protection through program evolution"
 - Evolve the OS s.t. each OS instance takes complex operations to "infect" → complexity leverage
- 1998 "A Note on the Role of Deception in Information Protection"
 - Deception ToolKit (DTK) + a theory of deception
- 2001 "A Framework for Deception" Fred Cohen & Associates

Info Pro Big Problems

- There are almost no scientific experiments
 - No widely used theory of measurement
 - Almost no useful metrics
 - Progress in an attack graph with time (units?)
 - Almost no scientifically valid experiments
 - We don't even have a physics...
- A big part of the problem:
 - We have a purely mathematical basis
 - It ignores the people and processes
- A big part of the solution:
- Social sciences integrated with artificial sciences
 Fred Cohen & Associates

Another social problem

- Science is about refutation
 - When you say something, expect a challenge
 - On a rational and relevant basis
 - If you can't answer the challenge, you're refuted
 - Sort of for now...
- But decision-makers in this space don't like it
 - Example: risk aggregation in large-scale systems
 - Example: computer viruses vs. trusted systems
 - Example: security theater vs. measurable basis
- We could use some executives who seek refutation rather than "yes – you're right"

And another critical issue

- Information protection involves people
 - As a field we don't seem to apply the human research areas to our work very often or well
 - Sociology, psychology, social psychology, etc.
 - Behavioral models and cognitive limitations
 - Decision-making methodologies and metrics
 - Deception and counter-deception effects
 - User interfaces and reasonable expectations
 - Without addressing the human aspects, we are destined to fail to meet our protection objectives

The f le you downloaded is from an untrusted source. Since we cannot verify the source of this f le, it may contain any of a wide range of different security implications that cannot be determined in advance with current technology. Either:

- (1) contact your security off cer or SPO off ce prior to using the program,
- (2) make an independent determination that this f le is what was desired or not, and based on that determination make a prudent decision about its use, or
- (3) Contact the help desk at x2331 for further assistance

A cognitive error theory

- 2001 A Framework for Deception
 - Humans make known types of cognitive errors
 - Deception induces and suppresses signals to induce specific cognitive errors
 - The result is predictable changes in behavior
 - $C \rightarrow^{\mathrm{M}} E$
 - C: Induced and/or suppressed signals
 - M: Cognitive errors
 - E: Predicted behavioral changes
- Experiments have confirmed for many cases
- The same applies to computers, groups, ...

Outline

- My background
- Measurement and science
- The human reality of science and protection
- The physics of digital information
- The future

How did some sciences form?

Physics	Biology	Digital space
Observe nature	Observe nature	
Theorize (Newton)	T(Microorganisms)	No higher theory
Test / generalize	Test / generalize	
Build reliably	Build reliably	Don't build reliably
Oops refutation	Oops refutation	Models problematic
Theorize (Quantum)	Theory (Genes)	Some models
Test / generalize	Test / generalize	Complexity issues
Build reliably	Build reliably	Mathematics (right)
X7		

You can't build reliable bridges using only quantum theory You can't reliably cure diseases using only genetic theory

Fred Cohen & Associates

Approaches to protection science

- Mathematics
 - Keep building from the bottom
 - Hope to construct our way out of it
 - Complexity issues

- Archeology
 - NSF approach to DF
 - Requires a physics
 - Problematic for reliable results

- Engineering
 - Build and test
 - Find and fix
 - Requires a physics
 - Bridges are falling

Social sciences

- Statistics: Causality is complex / unknown at minutia level
 - P(x) problematic
 - Measure what? How?

Notions of a new approach

- Information physics: (IRB decisions required)
 - A "physics of digital information" level to reduce complexity and allow composition based on physics properties
 - A "behavioral science" component to address social factors associated with protection
 - Example: Deception experiments from ~2000
 - "Leading Attackers Through Attack Graphs with Deceptions" - 2002
 - Human and group dynamics taken into account
 - Measured progress in attack graphs with time
 - Differential effects of 3 types of "deceptions"

A different physics?

- Some basic physics of the digital world:
 - Digital data is entirely sequences of bits
 - The atomic unit is the "bit"
 - Nothing smaller (finite granularity)
 - No longer dealing with the digital evidence
 - Smaller than a bit it's physical evidence
 - Finite bit granularity → finite time granularity
 - Bits can only store traces (of time) at finite granularity (a finite bit sequence)
- Normal space: infinite granularity space/time
- Digital space: finite granularity space/time

F. Cohen, "Digital Forensic Evidence Examination - 4th ed.", ASP Press, 2012 Fred Cohen & Associates

Finite granularity issues

- Finite granularity → time is a partial ordering
 - A before B (A<B), A after B (A>B), Can't tell (A≈B)
 - Traces as recorded are subject to Δt
 - What is the Δt for your traces / time stamps?
 - Is the claim a sequence of events?
 - Don't know $\Delta t \rightarrow don't$ know the sequence!
- Precision vs. accuracy
 - Trace time stamps are subject to delays, etc.
 - They look precise (2010-11-02 03:34:54.455)
 - But often aren't as accurate (off by 9 hours)
 - Mixed granularity misleading as to sequences
- Some Windows time stamps at 1-day granularity Fred Cohen & Associates

Convergence vs. divergence

- FSMs have "perfect" forward predictability
 - Given an FSM, initial state, and input sequence, all state and output sequences are precisely defined
 - Many FSMs and input sequences produce identical output sequences
 - Digital space "converges" with time
 - Traces do not uniquely identify causes!
 - $C \rightarrow mE \not H E \rightarrow C Effect does not imply (unique) cause!$
- Normal space (physics) admits to only one past but many possible futures: E→C unique!!!
 - Normal space "diverges" with time!
 - Effect implies unique cause

Latent nature and tools

- Bits (and DFE) are (normally) latent in nature
 - Bits can't be directly observed with human senses
 - The bits must be observed through tools
 - How do we understand and trust the tools?
 - Most tools interpret/present bit sequences with FSMs
 - How do we assess and present tool reliability?
 - How do we deal with human interpretation of output?
 - A scientific methodology to evaluate tools?
 - No methodology → regardless of what the tools tell us, we don't know how to interpret it
 - What is the basis for trusting tools?
 - In most cases, no basis is provided / cognition ignored
 - Do you know the scientific principals and methods?

How do we know?

- How do we calibrate and test tools?
 - Calibration → validation with known samples
 - What known samples are right for the matter?
 - What is the "right" answer and how do we tell?
 - Testing involves software verification
 - Mathematical proofs?
 - Tests against error models?
 - How about human interpretation of output?
 - A theory of measurement is needed:
 - What does the tool measure? How does it do it?
 - Do I need / can I use the same tool to test it?
 - How do I interpret the output?

Outline

- My background
- Measurement and science
- The human reality of protection
- The physics of digital information
- The future

An engineering discipline

- An approach to building reliable protection
 - A science base that produces methodologies, scientific theories along with limitations, measurement methods, defined language and usage, and experimental basis for showing properties of components and composites.
 - A set of well tested tools and techniques for analysis and construction of mechanisms with known properties and identified limitations not requiring expertise in the lowest level of minutia.
 - A global feedback mechanism for improvement over time, including a rich set of peer reviewed publications, professional standards, and strong educational base with common real knowledge

With social science included

- The social part of science... and engineering
- The successful discipline must account for computer, network, human, and group
 - Cognition, Behavior, Limits, Interaction,
 Personalities, Tolerances, Changes, Errors,
 Deception, Competition, Malice, Cooperation,
 Time frames, etc.
- Or...
 - We could continue to increase dependency on methodologies, systems, mechanisms, and people based on mysticism and hyperbole

Thank You

http://all.net/ - fc at all.net